• Title/Summary/Keyword: Sensor Network Management

Search Result 854, Processing Time 0.032 seconds

Energy Efficient Clustering Scheme for Multi-sensor on Wireless Sensor Networks (무선 센서 네트워크의 다종 센서에 대한 에너지 효율적인 클러스터링 기법)

  • Choi, Dongmin;Chung, Ilyong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.3
    • /
    • pp.573-584
    • /
    • 2016
  • Recent application range of sensor networks is becoming diverse. It means collected sensor data types are becoming diverse too. These sensor data have their own characteristics. Thus achieving energy efficiency, existing sensor network management policy consider their own characteristics. However, it is inefficient to apply the existing network management schemes for controlling such kind of data at the same time. Because, existing network management schemes considered one type of data only. Therefore, we propose a novel routing scheme that is able to efficient energy conservation through effective data controlling on multi-sensor application environment.

Wireless Sensor Network Development using RFID for Agricultural Water Management (농업용수관리를 위한 RFID 기반 무선 센서 네트워크 개발)

  • Nam, Won-Ho;Kim, Tae-Gon;Choi, Jin-Yong;Kim, Jin-Taek;La, Min-Chul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.5
    • /
    • pp.43-51
    • /
    • 2011
  • Irrigation facilities are spread over demand area in a low density and exposed in the field requiring efficient operation and maintenance. Thus, it could be more efficient to manage an irrigation system when it is with wireless sensor network (WSN) using RFID (Radio Frequency Identification) application. A WSN, a kind of ubiquitous sensor network composed of wireless network, RFID and database management system was developed for agricultural water management in terms of operational status and maintenance requirements. Identification code for RFID tag was designed and an application for RFID reader was developed for field data collection, and a database management system was constructed for managing irrigation facility attributes. The system was installed in I-dong irrigation districts in Gyounggi-province, Korea and the operated results showed the applicability of the WSN for agricultural water management.

Study about implementation of the system management application system that used an ubiquitous sensor network (유비쿼터스 센서 네트워크를 이용한 시스템관리 응용 시스템의 구현에 관한 연구)

  • Nam, Sang-Yep;Lee, Min-Goo;Kang, Jung-Hun;Yoon, Myung-Hyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.2
    • /
    • pp.116-122
    • /
    • 2007
  • System management application system is one of the most interesting fields in Ubiquitous Sensor Networks. It conforms to the property of Ubiquitous Sensor Networks very well, and it is the closest application for commercial use. We have two kinds of system management technology, such as the one which is accessed by web browser at anytime, anywhere and another one which is for local accessed system. In this paper, our purpose is implementation of system management application system which provides Mesh Sensor Networks topology with IP based agent platform and system management server. Furthermore we introduce the functions used for our recent implementation and propose several future issues about system management application system.

  • PDF

A GTS-based Sensor Data Gathering under a Powerful Beam Structure (파워 빔 구조에서 GTS 기반 센서 데이터 수집 방안)

  • Lee, Kil Hung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.39-45
    • /
    • 2014
  • This paper proposes an architecture of a sensor network for gathering data under a powerful beam cluster tree architecture. This architecture is used when there is a need to gather data from sensor node where there is no sink node connected to an existing network, or it is required to get a series of data specific to an event or time. The transmit distance of the beam signal is longer than that of the usual sensor node. The nodes of the network make a tree network when receiving a beam message transmitting from the powerful root node. All sensor nodes in a sink tree network synchronize to the superframe and know exactly the sequence value of the current superframe. When there is data to send to the sink node, the sensor node sends data at the corresponding allocated channel. Data sending schemes under the guaranteed time slot are tested and the delay and jitter performance is explained.

An Optimization Algorithm for the Maximum Lifetime Coverage Problems in Wireless Sensor Network

  • Ahn, Nam-Su;Park, Sung-Soo
    • Management Science and Financial Engineering
    • /
    • v.17 no.2
    • /
    • pp.39-62
    • /
    • 2011
  • In wireless sensor network, since each sensor is equipped with a limited power, efficient use of the energy is important. One possible network management scheme is to cluster the sensors into several sets, so that the sensors in each of the sets can completely perform the monitoring task. Then the sensors in one set become active to perform the monitoring task and the rest of the sensors switch to a sleep state to save energy. Therefore, we rotate the roles of the active set among the sensors to maximize the network lifetime. In this paper, we suggest an optimal algorithm for the maximum lifetime coverage problem which maximizes the network lifetime. For comparison, we implemented both the heuristic proposed earlier and our algorithm, and executed computational experiments. Our algorithm outperformed the heuristic concerning the obtained network lifetimes, and it found the solutions in a reasonable amount of time.

Lode Location Management Using RSSI Regression Analysis in Wireless Sensor Network (RSSI의 회귀 분석을 이용한 무선센서노드의 위치관리)

  • Yang, Hyun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1935-1940
    • /
    • 2009
  • One of the key technical challenges of wireless sensor network (WSN) is location management of sensor nodes. Typical node location management methods use GPS, ultrasonic sensors or RSSI. In this paper we propose a new location management method which adopts regression analysis of RSSI measurement to improve the accuracy of sensor node position estimation. We also evaluated the performance of proposed method by comparing the experimental results with existing scheme. According to the results, our proposed method, LM-RAR, shows better accuracy than existing location management scheme using RSSI and Friis' equation.

Recursive PCA-based Remote Sensor Data Management System Applicable to Sensor Network

  • Kim, Sung-Ho;Youk, Yui-Su
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.126-131
    • /
    • 2008
  • Wireless Sensor Network(WSNs) consists of small sensor nodes with sensing, computation, and wireless communication capabilities. It has new information collection scheme and monitoring solution for a variety of applications. Faults occurring to sensor nodes are common due to the limited resources and the harsh environment where the sensor nodes are deployed. In order to ensure the network quality of service it is necessary for the WSN to be able to detect the faulty sensors and take necessary actions for the reconstruction of the lost sensor data caused by fault as earlier as possible. In this paper, we propose an recursive PCA-based fault detection and lost data reconstruction algorithm for sensor networks. Also, the performance of proposed scheme was verified with simulation studies.

Clustering Optimal Design in Wireless Sensor Network using Ant Colony Optimization (개미군 최적화 방법을 적용한 무선 센서 네트워크에서의 클러스터링 최적 설계)

  • Kim, Sung-Soo;Choi, Seung-Hyeon
    • Korean Management Science Review
    • /
    • v.26 no.3
    • /
    • pp.55-65
    • /
    • 2009
  • The objective of this paper is to propose an ant colony optimization (ACO) for clustering design in wireless sensor network problem. This proposed ACO approach is designed to deal with the dynamics of the sensor nodes which can be adaptable to topological changes to any network graph in a time. Long communication distances between sensors and a sink in a sensor network can greatly consume the energy of sensors and reduce the lifetime of a network. We can greatly minimize the total communication distance while minimizing the number of cluster heads using proposed ACO. Simulation results show that our proposed method is very efficient to find the best solutions comparing to the optimal solution using CPLEX in 100, 200, and 400 node sensor networks.

Design and Implementation of Wireless Management System for Pet Dog Using Wireless Sensor Network (무선 센서네트워크를 이용한 애완견용 무선 관리 시스템의 설계 및 구현)

  • Kim, Dong-Sung
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.5 no.1
    • /
    • pp.13-24
    • /
    • 2006
  • This paper proposes a wireless management system for a pet dog using wireless sensor network. The developed intelligent wireless management system is compose of a central control system, auto-feeder, miniguidance robot, and wireless sensing devices. The developed system uses three types of sensed data such as light, temperature, md sounds from a pet dog and surrounded environment respectively. The presented design method using these data provides an efficient way to controlling and monitoring the pet dog. The implemented system can be used as a design framework of portable device for the pet management.

  • PDF

Design and Implementation of Wireless Management System for Pet Dog Using Wireless Sensor Network (무선 센서네트워크를 이용한 애완견용 무선 관리 시스템의 설계 및 구현)

  • Kim, Dong-Sung
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.7 no.1
    • /
    • pp.1-13
    • /
    • 2007
  • This paper proposes a wireless management system for a pet dog using wireless sensor network. The developed intelligent wireless management system is compose of a central control system, auto-feeder, mini-guidance robot, and wireless sensing devices. The developed system uses three types of sensed data such as light, temperature, and sounds from a pet dog and surrounded environment respectively. The presented design method using these data provides an efficient way to controlling and monitoring the pet dog. The implemented system can be used as a design framework of portable device for the pet management.

  • PDF