• Title/Summary/Keyword: Sensor Fault Diagnosis

Search Result 151, Processing Time 0.023 seconds

Fault Detection and Isolation of System Using Multiple Pi Observers (비례적분(PI) 관측기를 이용한 시스템의 고장진단)

  • Kim, H.S.;Kim, S.B.;Shigeyasu Kawaji
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.41-47
    • /
    • 1997
  • Fault diagnosis problem is currently a subject of extensive research in the control field. Although there are several works on the fault detection and isolation observers and the residual generators, those are con- cerned with only the detection of actuator failures or sensor failures. So, the perfect detection and isolation for the actuator and sensor failures is strongly required in the field of the practical applications. In this paper, a strategy of fault diagnosis using multiple proportional integral (PI) observers including the magnitude of actuator failures is provided. It is shown that actuator failures are detected and isolated perfectly by monitoring the integrated error between actual output and estimated output by a PI observer. Also in presence of complex actuator and sensor failures, these failures are detected and isolated by multiple PI observers.

  • PDF

A fault diagnosis method using an artificial neural network (인공 신경망을 이용한 공정고장 진단방법)

  • 이상규;박선원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.339-343
    • /
    • 1990
  • This paper describes a neural-network-based methodology for providing a potential solution in the area of process fault diagnosis. The existing neural network for fault diagnosis learn fault node by using pairs of single-symptom-single-cause only. But in real plants, the effect of a fault propagates continuously from it's origin; different sensor values reflect this. In this paper, we suggest a new method which can handle the effect of symptom propagation. The proposed method can find the exact origin of the fault of which the symptom is propagated continuously with time.

  • PDF

A Fault Diagnosis and Fault Handling Algorithm for a Vehicle Cruise Control System (종방향 차량 주행 시스템의 고장 진단 및 처리 알고리듬)

  • 이경수;문일기;안장모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.216-221
    • /
    • 2004
  • This paper describes a fault detection and fault handling algorithm to be used in a longitudinal vehicle cruise control systems. The fault diagnosis system consists of two structures to generate proper residuals and to find that which component has a fault. A systematic design of the fault diagnosis system using model-based techniques is presented. A linear observer is used to create a set of signals sensitive to faults in a radar sensor. The fault handling system consists of two structures to compensate for faults and degraded system performance. Simulation results show that the algorithm is effective for a fault diagnosis and handling in a longitudinal vehicle cruise control system.

A Fault Diagnosis and Fault Handling Algorithm for a Vehicle Cruise Control System (종방향 차량 주행 시스템의 고장 진단 및 처리 알고리듬)

  • 이경수;문일기;안장모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.215-215
    • /
    • 2004
  • This paper describes a fault detection and fault handling algorithm to be used in a longitudinal vehicle cruise control systems. The fault diagnosis system consists of two structures to generate proper residuals and to find that which component has a fault. A systematic design of the fault diagnosis system using model-based techniques is presented. A linear observer is used to create a set of signals sensitive to faults in a radar sensor. The fault handling system consists of two structures to compensate for faults and degraded system performance. Simulation results show that the algorithm is effective for a fault diagnosis and handling in a longitudinal vehicle cruise control system.

Ubiquitous Networking based Intelligent Monitoring and Fault Diagnosis Approach for Photovoltaic Generator Systems (태양광 발전 시스템을 위한 유비쿼터스 네트워킹 기반 지능형 모니터링 및 고장진단 기술)

  • Cho, Hyun-Cheol;Sim, Kwang-Yeal
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1673-1679
    • /
    • 2010
  • A photovoltaic (PV) generator is significantly regarded as one important alternative of renewable energy systems recently. Fault detection and diagnosis of engineering dynamic systems is a fundamental issue to timely prevent unexpected damages in industry fields. This paper presents an intelligent monitoring approach and fault detection technique for PV generator systems by means of artificial neural network and statistical signal detection theory. We devise a multi-Fourier neural network model for representing dynamics of PV systems and apply a general likelihood ratio test (GLRT) approach for investigating our decision making algorithm in fault detection and diagnosis. We make use of a test-bed of ubiquitous sensor network (USN) based PV monitoring systems for testing our proposed fault detection methodology. Lastly, a real-time experiment is accomplished for demonstrating its reliability and practicability.

A Study on Real time Multiple Fault Diagnosis Control Methods (실시간 다중고장진단 제어기법에 관한 연구)

  • 배용환;배태용;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.457-462
    • /
    • 1995
  • This paper describes diagnosis strategy of the Flexible Multiple Fault Diagnosis Module for forecasting faults in system and deciding current machine state form sensor information. Most studydeal with diagnosis control stategy about single fault in a system, this studies deal with multiple fault diagnosis. This strategy is consist of diagnosis control module such as backward tracking expert system shell, various neural network, numerical model to predict machine state and communication module for information exchange and cooperate between each model. This models are used to describe structure, function and behavior of subsystem, complex component and total system. Hierarchical structure is very efficient to represent structural, functional and behavioral knowledge. FT(Fault Tree). ST(Symptom Tree), FCD(Fault Consequence Diagrapy), SGM(State Graph Model) and FFM(Functional Flow Model) are used to represent hierachical structure. In this study, IA(Intelligent Agent) concept is introduced to match FT component and event symbol in diagnosed system and to transfer message between each event process. Proposed diagnosis control module is made of IPC(Inter Process Communication) method under UNIX operating system.

  • PDF

Fault Tolerant Controller Design for Linear Stochastic Systems with Uncertainties (불확실성을 갖는 선형 확률적 시스템에 대한 고장허용제어기 설계)

  • Lee, Jong-Hyo;Yoo, Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.107-116
    • /
    • 2003
  • This paper presents a systematic design methodology for fault tolerant controller against a fault in actuators and sensors of linear stochastic systems with uncertainties. The scheme is based on fault detection and diagnosis(isolation and estimation) using a bank of robust two-stage Kalman filters, and accommodation of the actuator fault by eigenstructure assignment and immediate compensation of the sensor's faulty measurement. In order to clarify the fault feature in test statistics of residual, noise reduction method is given by multi-scale discrete wavelet transform. The effectiveness of our approach Is shown via simulations for a VTOL(vertical take-off and landing) aircraft subjected to parameter variations, external disturbances, process and sensor noises.

Fault Diagnosis for Electric Chassis System

  • Ryu, Seong-Pil;Kwak, Byung-Hak;Park, Young-Jin;Jung, Hun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.116.1-116
    • /
    • 2001
  • In the near future, drive-by-wire systems will replace mechanical systems of vehicles. Since there would be no mechanical redundancy in the x-by-wire subsystem, it needs to improve the reliability of the system using fault diagnosis of sensors and actuators. This paper proposes a Kalman filter based fault diagnosis method for the vehicle with the drive-by-wire system, which includes steer-by-wire, brake-by-wire and throttle-by-wire systems. We will show that the proposed method is successful in fault detection and isolation for single sensor/actuator faults of the vehicle system.

  • PDF

Fault Diagnosis of Low Speed Bearing Using Support Vector Machine

  • Widodo, Achmad;Son, Jong-Duk;Yang, Bo-Suk;Gu, Dong-Sik;Choi, Byeong-Keun;Kim, Yong-Han;Tan, Andy C.C;Mathew, Joseph
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.891-894
    • /
    • 2007
  • This study presents fault diagnosis of low speed bearing using support vector machine (SVM). The data used in the experiment was acquired using acoustic emission (AE) sensor and accelerometer. The aim of this study is to compare the performance of fault diagnosis based on AE signal and vibration signal with same load and speed. A low speed test rig was developed to simulate various defects with shaft speeds as low as 10 rpm under several loading conditions. In this study, component analysis was also performed to extract the feature and reduce the dimensionality of original data feature. Moreover, the classification for fault diagnosis was also conducted using original data feature without feature extraction. The result shows that extracted feature from AE sensor gave better performance in faults classification.

  • PDF

Study on Fault Diagnosis and Data Processing Techniques for Substrate Transfer Robots Using Vibration Sensor Data

  • MD Saiful Islam;Mi-Jin Kim;Kyo-Mun Ku;Hyo-Young Kim;Kihyun Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.45-53
    • /
    • 2024
  • The maintenance of semiconductor equipment is crucial for the continuous growth of the semiconductor market. System management is imperative given the anticipated increase in the capacity and complexity of industrial equipment. Ensuring optimal operation of manufacturing processes is essential to maintaining a steady supply of numerous parts. Particularly, monitoring the status of substrate transfer robots, which play a central role in these processes, is crucial. Diagnosing failures of their major components is vital for preventive maintenance. Fault diagnosis methods can be broadly categorized into physics-based and data-driven approaches. This study focuses on data-driven fault diagnosis methods due to the limitations of physics-based approaches. We propose a methodology for data acquisition and preprocessing for robot fault diagnosis. Data is gathered from vibration sensors, and the data preprocessing method is applied to the vibration signals. Subsequently, the dataset is trained using Gradient Tree-based XGBoost machine learning classification algorithms. The effectiveness of the proposed model is validated through performance evaluation metrics, including accuracy, F1 score, and confusion matrix. The XGBoost classifiers achieve an accuracy of approximately 92.76% and an equivalent F1 score. ROC curves indicate exceptional performance in class discrimination, with 100% discrimination for the normal class and 98% discrimination for abnormal classes.