• 제목/요약/키워드: Sensor Driver System

검색결과 250건 처리시간 0.024초

호흡기반 운전자 졸음 감지를 위한 압력센서 시스템 (A pressure sensor system for detecting driver's drowsiness based on the respiration Paper Template for the KITS Review)

  • 김재우;박재희;이재천
    • 한국ITS학회 논문지
    • /
    • 제12권2호
    • /
    • pp.45-51
    • /
    • 2013
  • 본 논문에서 호흡 기반의 운전자 졸음 감지 센서 시스템에 대해 언급하였다. 센서 시스템은 운전자의 복부 부분 안전벨트에 장착된 PZT 압력센서와 개인용 컴퓨터로 구성됐다. PZT 압력센서는 호흡 시 운전자 복부의 움직임에 의해 압력센서에 가해지는 압력의 변화를 측정하기 위해 사용되었고 운전자의 졸음을 감지하기 위한 신호처리는 Labview를 사용하여 개발됐다. 30세 남자 운전자를 상대로 운전자 졸음 감지 관련 실험들이 수행되어 졌다. 운전자가 각성상태일때 호흡의 크기는 졸음상태일 때보다 컸으며 반대로 호흡 주파수는 낮았다. 이런 실험을 바탕으로 제작된 졸음 감지 센서 시스템은 운전자의 졸음을 성공적으로 실시간 감지할 수 있었다.

Spectral-Domain 광 계측을 위한 CCD 이미지 센서 드라이버 제작 (Realization of CCD Image Sensor Driver for Spectral-Domain Optical Measurement System)

  • 김훈섭;이정렬;엄진섭
    • 산업기술연구
    • /
    • 제27권B호
    • /
    • pp.125-128
    • /
    • 2007
  • This paper presents Spectral-Domain optical measurement system using self-fabricated CCD sensor driver. The light source is a high brightness white LED and the detector is a 2048 array typed CCD image sensor. I have fabricated the CCD sensor driver to generate four pulse signals, which are the CCD-driving pulses. Using this Spectral Domain optical measurement system, the distance value between the reference mirror and the sample mirror can be obtained successfully.

  • PDF

운전자 자세 실시간 모니터링이 가능한 스마트 자동차 시트 연구 (Study of Smart Vehicle Seat for Real-time Driver Posture Monitoring)

  • 심광민;서정환
    • 자동차안전학회지
    • /
    • 제12권1호
    • /
    • pp.52-61
    • /
    • 2020
  • In recent years, the increasing interest in health-care requires the industrial products to be well-designed ergonomically. In the commercial vehicle industry, several researchers have demonstrated the driver's posture has great effect on the orthopedic desease such as fatigue, back pain, scoliosis, and so on. However, the existing sensor systems developed for measuring the driver posture in real time have suffered from inaccuracy and low reliability issues. Here, we suggest our smart vehicle seat system capable of real-time driver posture monitoring by using the air bag sensor package with high sensitivity and reliability. The ergonomic numerical model which can evaluate a driver's posture has been developed on the basis of the human body segmentation method followed by simulation-based validation. Our experimental analysis of obtained pressure distribution of a vehicle seat under the different driver's postures revealed our smart vehicle system successfully achieved the driver's real-time posture data in great agreement with our numerical model.

Robust Hierarchical Data Fusion Scheme for Large-Scale Sensor Network

  • Song, Il Young
    • 센서학회지
    • /
    • 제26권1호
    • /
    • pp.1-6
    • /
    • 2017
  • The advanced driver assistant system (ADAS) requires the collection of a large amount of information including road conditions, environment, vehicle status, condition of the driver, and other useful data. In this regard, large-scale sensor networks can be an appropriate solution since they have been designed for this purpose. Recent advances in sensor network technology have enabled the management and monitoring of large-scale tasks such as the monitoring of road surface temperature on a highway. In this paper, we consider the estimation and fusion problems of the large-scale sensor networks used in the ADAS. Hierarchical fusion architecture is proposed for an arbitrary topology of the large-scale sensor network. A robust cluster estimator is proposed to achieve robustness of the network against outliers or failure of sensors. Lastly, a robust hierarchical data fusion scheme is proposed for the communication channel between the clusters and fusion center, considering the non-Gaussian channel noise, which is typical in communication systems.

Nano-Q+에서 스마트 센서 디바이스 관리 시스템 (A Smart Sensor Device Management System in Nano-Q+)

  • 김범석;소선섭;김병호;은성배
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권1호
    • /
    • pp.31-39
    • /
    • 2008
  • 센서노드 운영체제는 다종다양한 센서를 효율적으로 관리하기 위해서 통일된 API와 효율적인 디바이스 드라이버 매니저를 지원하여야 한다. 하지만 Tiny-OS, Nano-Q+ 등의 기존 운영체제들은 이와 같은 디바이스 드라이버 매니저를 지원하지 않는다. 본 논문에서는 센서 I/O 서브시스템을 제안하여 응용프로그래머에게 통일된 API를 제공하며 디바이스 드라이버의 장탈착이 용이한 디바이스 관리 매니저를 제시한다. 탈부착이 가능한 스마트 센서를 위하여 원격 디바이스 드라이버 업데이트 방식을 제안한다. 이 방식은 일부 센서가 변경되었을 때 전체 응용이 아닌 디바이스 드라이버만의 다운로딩이 가능하다. ETRI가 개발한 Nano-Q+에 상기한 기능을 추가하여 설계하고 구현하였다. 기존 운영체제와 성능을 비교 평가하였고 디바이스 드라이버 부분 다운로딩이 다운로딩 속도를 획기적으로 개선시켰다.

이미지 센서를 이용한 차량 와이퍼 제어 시스템 구현 (Implementation of Vehicle Wiper Control System Using Image Sensor)

  • 전진영;장현숙;변형기
    • 센서학회지
    • /
    • 제23권4호
    • /
    • pp.259-265
    • /
    • 2014
  • When raining or snowing, windshield wiper system is very important for safety of driver. However, manual wiper system frequently needed to be controlled for sufficient visibility and it was very uncomfortable. So, rain sensor which controls automatically was developed. This rain sensor technology uses optical sensing technique sensed the rainfall by receiving reflected light of rain dropped on the windshield. The technology used optical sensor was simple and easy to implement as a rain sensing system in the car. However, it is sometime shown low accuracy to measure rainfall on the windshield when affected by ambient lights from surroundings. It is also given inconvenience to the driver to control the car. To solving these problems, we propose a rain sensing system using image sensor and the fuzzy wiper control algorithm.

Development of a Sleep-driving Accident Prevention System based on pulse

  • Bae, Seung-Woo;Seo, Jung-Hwa
    • 한국인공지능학회지
    • /
    • 제6권1호
    • /
    • pp.11-15
    • /
    • 2018
  • The purpose of this study is to develop a pulsatile drowsiness detection system that can compensate the limitations of existing camera - based or breathing pressure sensor based Drowsiness driving prevention systems. A heart rate sensor mounted on the driver's finger and an alarm system that sounds when drowsiness is detected. The heart rate sensor was used to measure pulse changes in the wrist, and an alarm system based on the Arduino, which works in conjunction with the laptop, generates an audible alarm in the event of drowsiness. In this paper, we assume that the pulse rate of the drowsy state is 60 ~ 65 times / minute, which is the middle between the awake state and the sleep state. As a result of the experiment, the alarm sounded when the driver's pulse rate was in the drowsy pulse rate range. Based on these experiments, the drowsiness detection system was able to detect the drowsiness of the driver successfully in real time. A more effective drowsiness prevention system can be developed in the future by incorporating the results of the present study on a pulse-based drowsiness prevention system in an existing drowsiness prevention system.

비전 기반 스마트 와이퍼 시스템을 위한 지능형 레인 감지 알고리즘 개발 (Intelligent Rain Sensing Algorithm for Vision-based Smart Wiper System)

  • 이경창;김만호;임홍준;이석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1727-1730
    • /
    • 2003
  • A windshield wiper system plays a key part in assurance of driver's safety at rainfall. However, because quantity of rain and snow vary irregularly according to time and velocity of automotive, a driver changes speed and operation period of a wiper from time to time in order to secure enough visual field in the traditional windshield wiper system. Because a manual operation of windshield wiper distracts driver's sensitivity and causes inadvertent driving, this is becoming direct cause of traffic accident. Therefore, this paper presents the basic architecture of vision-based smart windshield wiper system and the rain sensing algorithm that regulate speed and operation period of windshield wiper automatically according to quantity of rain or snow. Also, this paper introduces the fuzzy wiper control algorithm based on human's expertise, and evaluates performance of suggested algorithm in simulator model. In especial, the vision sensor can measure wide area relatively than the optical rain sensor. hence, this grasp rainfall state more exactly in case disturbance occurs.

  • PDF

광센서를 이용한 차량용 전자동 선바이저의 설계 및 제어 (Control and Mechanism Design of Fully Automatic Sunvisor Using Photo Sensor)

  • 이창섭;김동남;홍대희;이상훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.319-320
    • /
    • 2006
  • In this paper, automatic sunvisor system is introduced for driver's safety and convenience. This system has the mechanism which keeps the sun off without obstruction of driver's sight. The mechanism can make the sunvisor move forward or rotate left while remaining inside inner roof. The control system consists of a CPU, a motor driver, light sensors, and the algorithm that can control the movement of sunvisor efficiently. When the light sensors take the sun light, they give the signal to the CPU and the CPU calculates the best position of the sunvisor with the information of driver's eyes height. Then, the CPU gives the signal to motors that can move the sunvisor.

  • PDF

Design and Implementation of LED Dimming System with Intelligent Sensor Module

  • Cho, Young Seek;Kwon, Jaerock;Kim, Hwan-Yong
    • Journal of information and communication convergence engineering
    • /
    • 제11권4호
    • /
    • pp.247-252
    • /
    • 2013
  • An intelligent light emitting diode (LED) dimming system is designed and implemented for energy-saving lighting systems. An LED light bulb is powered by an LED driver controlled by a microcontroller using pulse width modulation (PWM) signals. By changing the duty cycle of the PWM signals, the LED driver generates a driving current of up to 1,000 mA. The current consumption by the LED light bulb exhibits a very linear characteristic that indicates that the level of LED dimming can be finely tuned. Multiple sensors-lighting intensity and ultrasonic range sensors-are combined with the LED dimming system to realize an automatically controllable LED lighting system. The light intensity sensor is capable of sensing ambient light. The ultrasonic range sensor can detect objects from 0.15 to 5.6 m at a resolution of 0.0254 m. The collected information by the light intensity and ultrasonic range sensors is processed by the microcontroller that in turn automatically controls the brightness of the LED light bulb. The algorithm of the software for the LED dimming system is also described.