• Title/Summary/Keyword: Sensor Data Process

Search Result 1,004, Processing Time 0.041 seconds

Model Based Fault Detection for Advanced ESC System (지능형 ESC 시스템을 위한 모델 기반 결함검출)

  • Kim, Byeong-Woo;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2306-2313
    • /
    • 2010
  • This paper describes a model based fault detection algorithm for an Advanced ESC System which consists of Hydraulic Control Unit (HCU) with built-in wheel pressure sensors. Advanced ESC System can be used for various value-added functions such as Stop & Go Function and Regenerative Brake Function. Therefore, HCU must have a reliable fault detection. Due to the huge amount of sensor signals, existing specific sensor based fault detection of HCU cannot guarantee the safety of vehicle. However, proposed algorithm dose not require the sensors. When model based fault detection algorithm detects severe failures of the HCU, it warns the driver in advance to prevent accidents due to the failures. For this purpose, a mathematical model is developed and validated in comparison to actual data. Simulation results and data acquired from an actual system are compared with each other to obtain the information needed for the fault detection process.

A Multi Router Support Mechanism in 6LowPAN (6LowPAN 에서 멀티 라우터 지원 방법)

  • Jung, Seuk;Lim, Chae-Seong;Jung, Won-Do;Yoo, Seung-Wha;Roh, Byeong-Hee;Kim, Ki-Hyung
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.279-282
    • /
    • 2007
  • Typically a wireless sensor network consists of a number of nodes that sense surrounding environment and collaboratively work to process and route the sensing data to a sink or gateway node. We propose an architecture with support of multiple routers in IPv6-based Low-power Wireless Personal Area Network (6LoWPAN). Our architecture provides traffic load balancing and increases network lifetime as well as self-healing mechanism so that in case of a router failure the network still can remain operational. Each router sends its own Router Advertisement message to nodes and all the nodes receiving the messages can select which router is the best router with the minimum hop-count and link information. We have implemented the architecture and assert our architecture helps in traffic load balancing and reducing data transmission delay for 6LoWPAN.

  • PDF

An Analysis on the Effects of Cluster Leadership Rotation among Nodes Using Least Temperature Routing Protocol

  • Encarnacion, Nico;Yang, Hyunho
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.2
    • /
    • pp.104-108
    • /
    • 2014
  • The field of body sensor networks has attracted interest of many researchers due to its potential to revolutionize medicine. These sensors are usually implanted inside the human body and communicate among themselves. In the process of receiving, processing, or transmitting data, these devices produce heat. This heat damages the tissues surrounding the devices in the case of prolonged exposure. In this paper, to reduce this damages, we have improved and evaluated two protocols-the least temperature routing protocol and adaptive least temperature routing protocol-by implementing clustering as well as a leadership rotation algorithm. We used Castalia to simulate a basic body area network cluster composed of 6 nodes. A throughput application was used to simulate all the nodes sending data to one sink node. Simulations results shows that improved communication protocol with leadership rotation algorithm significantly reduce the energy consumption as compared to a scheme without leadership rotation algorithm.

Localization of an Autonomous Mobile Robot Using Ultrasonic Sensor Data (초음파센서를 이용한 자율 이동로봇의 위치추적)

  • 최창혁;송재복;김문상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.666-669
    • /
    • 2000
  • Localization is the process of aligning the robot's local coordinates with the global coordinates of a map. A mobile robot's location is basically computed by a dead reckoning scheme, but this position information becomes increasingly inaccurate during navigation due to odometry errors. In this paper, the method of building a map of a robot's environment using ultrasonic sensor data and the occupancy grid map scheme is briefly presented. Then, the search and matching algorithms to compensate for the odometry error by comparing the local map with the reference map are proposed and verified by experiments. It is shown that the compensated error is not accumulated and exists within the limited range.

  • PDF

Geometric Accuracy Measurement of Machined Surface Using the OMM (On the Machine Measurement) System

  • Kim, Sun-Ho;Lee, Seung-Woo;Kim, Dong-Hoon;Lee, An-Sung;Lim, Sun-Jong;Park, Kyoung-Taik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.57-63
    • /
    • 2003
  • Machining information such as form accuracy and surface roughness is an important factor for manufacturing precise parts. To this regard, OMM (On the Machine Measurement) has been researched for last several decades to alternate CMM (Coordinate Measurement Machine) process. In this research, the OMM system with a laser displacement sensor was developed for measuring form accuracy and surface roughness of the machined workpiece on the machine tool. The surface roughness was estimated comparing the sensory signal with the reference data measured from master specimen. Also, form accuracy was determined from the moving averaged raw data. In addition, the geometric error map constructed beforehand using the geometric errors of the machine tool was used to compensate the obtained form accuracy. The overall performance was compared with CMM result, and verified the feasibility of the measurement system.

Hierarchical sampling optimization of particle filter for global robot localization in pervasive network environment

  • Lee, Yu-Cheol;Myung, Hyun
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.782-796
    • /
    • 2019
  • This paper presents a hierarchical framework for managing the sampling distribution of a particle filter (PF) that estimates the global positions of mobile robots in a large-scale area. The key concept is to gradually improve the accuracy of the global localization by fusing sensor information with different characteristics. The sensor observations are the received signal strength indications (RSSIs) of Wi-Fi devices as network facilities and the range of a laser scanner. First, the RSSI data used for determining certain global areas within which the robot is located are represented as RSSI bins. In addition, the results of the RSSI bins contain the uncertainty of localization, which is utilized for calculating the optimal sampling size of the PF to cover the regions of the RSSI bins. The range data are then used to estimate the precise position of the robot in the regions of the RSSI bins using the core process of the PF. The experimental results demonstrate superior performance compared with other approaches in terms of the success rate of the global localization and the amount of computation for managing the optimal sampling size.

A low-power 10 Gbps CMOS parallel-to-serial converter (저전력 10 Gbps CMOS 병렬-직렬 변환기)

  • Shim, Jae-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.469-474
    • /
    • 2010
  • This paper presents a 10Gbps CMOS parallel-to-serial converter for transmission of sensor data. A low-noise clock multiplying unit(CMU) and a multiplexer with controllable data sequence are proposed. The transmitter was fabricated in 0.13 um CMOS process and the measured total output jitter was less than 0.1 UIpp(unit-interval, peak-to-peak) over 20 kHz to 80 MHz bandwidth. The jitter of the CMU output only was measured as 0.2 ps,rms. The transmitter dissipates less than 200 mW from 1.5 V/2.5 V power supplies.

Wireless Connectivity flight Performance Evaluation of Unmanned Helicopters

  • Shin Low-Kok;Park Soo-Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.139-142
    • /
    • 2006
  • Numerous simulation studies and researches have recently revealed the rapid development and evolution in the emerging area of intelligent unmanned aerial vehicle (UAV). This study aims to develop a flight performance evaluation about the wireless unmanned helicopter. The process includes the design and testing of flight hardware and software that interprets sensor data. For the unmanned helicopter used in this research, an inertial sensor that provides posture (roll, pitch and yaw angles) and a Bluetooth is used to provide wireless connection between the user's pc and the helicopter were installed in the helicopter the helicopter's pitch, roll and yaw were the communication data. The accuracy of the system was confirmed by a computer simulation. The software also has been developed to support operators and displays helicopter position and posture by graphics.

  • PDF

A Study on the Method of Non-Standard Cargo Volume Calculation Based on LiDar Sensor for Cargo Loading Optimization (화물 선적 최적화를 위한 LiDar 센서 기반 비규격 화물 체적산출 방법 연구)

  • Jeon, Young Joon;Kim, Ye Seul;Ahn, Sun Kyu;Jeong, Seok Chan
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.4
    • /
    • pp.559-567
    • /
    • 2022
  • The optimal shipping location is determined by measuring the volume and weights of cargo shipped to non-standard cargo carriers. Currently, workers manually measure cargo volume, but automate it to improve work inefficiency. In this paper, we proposed the method of a real-time volume calculation using LiDar sensor for automating cargo measurement of non-standard cargo. For this purpose, we utilized the statistical techniques for data preprocessing and volume calculation, also used Voxel Grid filter to light weighted of data which are appropriate in real-time calculation. We implemented the function of Normal vectors and Triangle Mesh to generate surfaces and Alpha Shapes algorithms to process 3D modeling.

Automatic Registration Method for Multiple 3D Range Data Sets (다중 3차원 거리정보 데이타의 자동 정합 방법)

  • 김상훈;조청운;홍현기
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.12
    • /
    • pp.1239-1246
    • /
    • 2003
  • Registration is the process aligning the range data sets from different views in a common coordinate system. In order to achieve a complete 3D model, we need to refine the data sets after coarse registration. One of the most popular refinery techniques is the iterative closest point (ICP) algorithm, which starts with pre-estimated overlapping regions. This paper presents an improved ICP algorithm that can automatically register multiple 3D data sets from unknown viewpoints. The sensor projection that represents the mapping of the 3D data into its associated range image is used to determine the overlapping region of two range data sets. By combining ICP algorithm with the sensor projection constraint, we can make an automatic registration of multiple 3D sets without pre-procedures that are prone to errors and any mechanical positioning device or manual assistance. The experimental results showed better performance of the proposed method on a couple of 3D data sets than previous methods.