Since WSNs (Wireless Sensor Networks) applied to their application areas such as smart home, smart factory, environment monitoring, etc., depend on sensor data, the sensor data is the most important among WSN components. The resources of each node consisting of WSN are extremely limited in energy, hardware and so on. Due to these limitation, communication failure probabilities become much higher and the communication failure causes data loss to occur. For this reason, this paper proposes 2MC (Maximum/Minimum Compression) that is a method to compress sensor data by selecting circular queue-based maximum/minimum sensor data values. Our proposed method reduces sensor data losses and value errors when they are recovered. Experimental results of 2MC method show the maximum/minimum 35% reduction efficiency in average sensor data accumulation error rate after the 3 times compression, comparing with CQP (Circular Queue Compression based on Period) after the compressed data recovering.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.8
/
pp.3641-3655
/
2016
Wireless sensor networks (WSNs) provide a promising approach to monitor the physical environments, to prolong the network lifetime by exploiting the mutual correlation among sensor readings has become a research focus. In this paper, we design a hierarchical network framework which guarantees layered-compression. Meanwhile, a data sorting-based adaptive spatial compression scheme (DS-ASCS) is proposed to explore the spatial correlation among signals. The proposed scheme reduces the amount of data transmissions and alleviates the network congestion. It also obtains high compression performance by sorting original sensor readings and selectively discarding the small coefficients in transformed matrix. Moreover, the compression ratio of this scheme varies according to the correlation among signals and the value of adaptive threshold, so the proposed scheme is adaptive to various deploying environments. Finally, the simulation results show that the energy of sorted data is more concentrated than the unsorted data, and the proposed scheme achieves higher reconstruction precision and compression ratio as compared with other spatial compression schemes.
Data compression technique is traditional and effective to reduce network traffic. Generally, sensor data exhibit strong correlation in both space and time. Many algorithms have been proposed to utilize these characteristics. However, each sensor just utilizes neighboring information, because its communication range is restrained. Information that includes the distribution and characteristics of whole sensor data provide other opportunities to enhance the compression technique. In this paper, we propose an orthogonal approach for compression algorithm based on a novel feedback diffusion algorithm in sensor networks. The base station or a super node generates the Huffman code for compression of sensor data and broadcasts it into sensor networks. Every sensor that receives the information compresses their sensor data and transmits them to the base station. We define this approach as feedback-diffusion. In order to show the superiority of our approach, we compare it with the existing aggregation algorithms in terms of the lifetime of the sensor network. As a result, our experimental results show that the whole network lifetime was prolonged by about 30%.
Yoon, Ikjune;Yi, Jun Min;Jeong, Semi;Jeon, Joonmin;Noh, Dong Kun
IEMEK Journal of Embedded Systems and Applications
/
v.11
no.2
/
pp.79-86
/
2016
In wireless sensor networks, increasing the sensing rate of each node to improve the data accuracy usually incurs a decrease of network lifetime. In this study, an energy-adaptive data compression scheme is proposed to efficiently control the sensing rate in an energy-harvesting wireless sensor network (WSN). In the proposed scheme, by utilizing the surplus energy effectively for the data compression, each node can increase the sensing rate without any rise of blackout time. Simulation result verifies that the proposed scheme gathers more amount of sensory data per unit time with lower number of blackout nodes than the other compression schemes for WSN.
Park, Jun-Ho;Lim, Jong-Tae;Yoo, Jae-Soo;Oh, Yong-Sun;Oh, Sang-Hoon;Min, Byung-Won;Park, Sun-Gyu;Noh, Hwang-Woo;Hayashida, Yukuo
International Journal of Contents
/
v.11
no.2
/
pp.31-36
/
2015
Recent years have seen a significant increase in demand for multimedia data over wireless sensor networks for monitoring applications that utilize sensor nodes to collect multimedia data, including sound and video. However, the multimedia streams generate a very large amount of data. When data transmission schemes for traditional wireless sensor networks are applied in wireless multimedia sensor networks, the network lifetime significantly decreases due to the excessive energy consumption of specific nodes. In this paper, we propose a data compression scheme that implements the Chinese remainder theorem to a wireless multimedia sensor network. The proposed scheme uses the Chinese Remainder Theorem (CRT) to compress and split multimedia data, and it then transmits the bit-pattern packets of the remainder to the base station. As a result, the amount of multimedia data that is transmitted is reduced. The superiority of our proposed scheme is demonstrated by comparing its performance to that of an existing scheme. The results of our experiment indicate that our proposed scheme significantly increased the compression ratio and reduced the compression operation in comparison to those of existing compression schemes.
Most of the sensor applications collect and analyze sensor data within a given period of time. When sensor send a data to sink, it spend many communication cost. Accordingly, a compression algorithm is one of the most critical issues for the communication cost decrease in sensor fields. In this paper, we propose an algorithm for compressing sensor data using the dynamic bit assignment technique. In our algorithm, sink collect sensor data within a short period of time and make bit assign information. Then sink send the information to sensor. Finally, sensors compresssensing data and send to sink.
Proceedings of the Korea Contents Association Conference
/
2008.05a
/
pp.87-91
/
2008
Data compression techniques are traditional and effective to reduce the network traffic. Generally, sensor data exhibit strong correlation in both space and time. Many algorithms have been proposed to utilize these characteristics. However, each sensor just utilizes neighboring information, since its communication range is restrained. The distribution and characteristics of whole sensor data provide other opportunities to enhance the compression technique. In this paper, we propose an orthogonal approach for compression algorithm. The base station or a super node generates useful information for compression of sensor data and broadcasts it into sensor networks. Every sensor that received the information compresses their sensor data and transmits them to the base station. We define this approach as feedback-diffusion. In order to show the superiority of our approach, we compare it with the existing aggregation algorithms in terms of the lifetime of the sensor network. As a result, our experimental results show that the whole network lifetime was prolonged by about 30%.
In recent years, the demands of multimedia data in wireless sensor networks have been significantly increased for the high-quality environment monitoring applications that utilize sensor nodes. However, since the amount of multimedia data is very large, the network lifetime is significantly reduced due to excessive energy consumption on particular nodes. To overcome this problem, in this paper, we propose a high efficiency data compression scheme in wireless multimedia sensor networks. The proposed scheme reduces the packet size by a multiple compression technique that consists of primary compression that deletes the lower priority bits considering characteristics of multimedia data and secondary compression based on Chinese Remainder Theorem. To show the superiority of our scheme, we compare it with the existing compression scheme. Our experimental results show that our proposed scheme reduces the amount of transmitted data by about 55% and increases network lifetime by about 16% over the existing scheme on average.
Journal of the Korea Society of Computer and Information
/
v.22
no.5
/
pp.81-88
/
2017
Solar-powered wireless sensor nodes can use extra energy to obtain additional data to increase the precision. However, if the amount of data sensed is increased indiscriminately, the overhead of relay nodes may increase, and their energy may be exhausted. In this paper, we introduce a sensing and compression rate selection scheme to increase the amount of data obtained while preventing energy exhaustion. In this scheme, the neighbor nodes of the sink node determine the limit of data to be transmitted according to the allocated energy and their descendant nodes, and the other nodes select a compression algorithm appropriate to the allocated energy and the limitation of data to be transmitted. A simulation result verifies that the proposed scheme gathers more data with a lower number of blackout nodes than other schemes. We also found that it adapts better to changes in node density and the amount of energy harvested.
The Transactions of the Korean Institute of Electrical Engineers P
/
v.56
no.1
/
pp.28-36
/
2007
Sensor networks are usually composed of tens or thousands of tiny devices with limited resources. Because of their limited resources, many researchers have studied on the energy management in the WSNs(Wireless Sensor Networks), especially taking into account communications efficiency. For effective data transmission and sensor fault detection in sensor network environment, a new remote monitoring system based on PCA(Principle Component Analysis) and AANN(Auto Associative Neural Network) is proposed. PCA and AANN have emerged as a useful tool for data compression and identification of abnormal data. Proposed system can be effectively applied to sensor network working in LEA2C(Low Energy Adaptive Connectionist Clustering) routing algorithms. To verify its applicability, some simulation studies on the data obtained from real WSNs are executed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.