• 제목/요약/키워드: Sensor Data Acquisition Model

검색결과 71건 처리시간 0.022초

자료동화 토양수분 데이터를 활용한 동아시아지역 수동형 위성 토양수분 데이터 보정: SMOS (MIRAS), GCOM-W1 (AMSR2) 위성 및 GLDAS 데이터 활용 (Revising Passive Satellite-based Soil Moisture Retrievals over East Asia Using SMOS (MIRAS) and GCOM-W1 (AMSR2) Satellite and GLDAS Dataset)

  • 김형록;김성균;정재환;신인철;신진호;최민하
    • 한국습지학회지
    • /
    • 제18권2호
    • /
    • pp.132-147
    • /
    • 2016
  • 동아시아 지역의 위성 토양수분 데이터 활용을 위해 Soil Moisture Ocean Salinity (SMOS) 위성에 탑재된 Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) 센서와 Global Change Observation Mission-Water (GCOM-W1) 위성에 탑재된 Advanced Microwave Scanning Radiometer 2 (AMSR2) 센서 기반 토양수분 데이터를 자료동화 데이터인 Global Land Data Assimilation System (GLDAS)를 기준 값으로 Cumulative Distribution Function (CDF) 기법과 회귀식을 활용하여 보정하는 연구를 수행하였다. 동아시아 지역에서 발생하는 전파간섭의 영향을 고려하여 토양수분 산출에 적합하다고 판단되는 Radio Frequency Interference (RFI), Data Quality indeX (DQX) 한계값과, 합성일수를 제시하였다. 보완된 위성 토양수분 데이터를 지점 토양수분 데이터와 비교한 결과 상관계수가 평균 27%, 11% 증가하였고, Root Mean Square Deviation (RMSD, 평균제곱근 편차)는 평균 61%, 57% 감소하였다. 추가적으로, 보정된 위성데이터를 GLDAS 토양수분 데이터와 비교했을 때, 보정된 MIRAS 및 AMSR2 데이터는 한반도의 80% 및 90%의 지역에서 상관계수가 증가하였으며, 한반도 전역에서 RMSD가 감소하였다. 본 연구를 통해 향후 MIRAS 및 AMSR2 위성 데이터를 융합하여 각 위성의 토양수분 데이터를 보완 할 수 있는 가능성을 제시하였다.

무인항공 LiDAR 센서에 따른 데이터 특성 분석 (Analysis of Data Characteristics by UAV LiDAR Sensor)

  • 박준규;이근왕
    • 한국산학기술학회논문지
    • /
    • 제21권5호
    • /
    • pp.1-6
    • /
    • 2020
  • UAV(Unmanned Aerial Vehicle)는 일반 유인 항공기나 위성에 비해 경제성이 크고, 대상물에 접근이 용이하여 군사적인 목적으로 많이 이용되어 왔다. 최근에는 IT 기술의 발전으로 다양한 센서를 탑재한 UAV가 출시되고 있으며 측량, 농업, 기상관측, 통신, 방송, 스포츠 등 광범위한 분야에서 이용이 증가하고 있으며, 공간정보를 제작하고 활용하는 분야에서 UAV를 활용하기 위한 다양한 연구와 시도가 증가하고 있다. 하지만 기존의 연구는 사진측량과 관련된 연구가 대부분이며, LiDAR(Light Detection And Ranging)에 대한 분석적 연구는 부족한 실정이다. 이에 본 연구에서는 공간정보 분야 활용을 위한 UAV LiDAR 센서의 특징을 분석하고자 하였다. LiDAR 센서의 취득속도, 반사횟수 등 상용화된 LiDAR 센서의 성능을 조사하고, 비슷한 정확도와 데이터 취득 가능 거리를 가지는 Surveyor Ultra와 VX15 모델을 선정하여 데이터 취득 및 분석을 수행하였다. 연구를 통해 각 센서별로 연구대상지의 DSM(Digital Surface Model)을 생성하고, 비교를 통해 데이터의 밀도, 정밀도, 식생지역에서 지면 데이터의 취득 등 특징을 제시하였다. UAV LiDAR 센서는 0.03m~0.05m의 정확도를 나타내었으며, 효과적인 활용을 위해서는 데이터의 특징들을 고려한 장비의 선정이 필요할 것으로 판단된다. 향후, 추가적인 연구를 통해 도심지역, 산림지역 등 다양한 지역에 대한 데이터 취득 및 분석이 이루어 진다면 UAV LiDAR의 활용성을 제시할 수 있을 것이다.

Absolute Atmospheric Correction Procedure for the EO-1 Hyperion Data Using MODTRAN Code

  • Kim, Sun-Hwa;Kang, Sung-Jin;Chi, Jun-Hwa;Lee, Kyu-Sung
    • 대한원격탐사학회지
    • /
    • 제23권1호
    • /
    • pp.7-14
    • /
    • 2007
  • Atmospheric correction is one of critical procedures to extract quantitative information related to biophysical variables from hyperspectral imagery. Most atmospheric correction algorithms developed for hyperspectral data have been based upon atmospheric radiative transfer (RT) codes, such as MODTRAN. Because of the difficulty in acquisition of atmospheric data at the time of image capture, the complexity of RT model, and large volume of hyperspectral data, atmospheric correction can be very difficult and time-consuming processing. In this study, we attempted to develop an efficient method for the atmospheric correction of EO-1 Hyperion data. This method uses the pre-calculated look-up-table (LUT) for fast and simple processing. The pre-calculated LUT was generated by successive running of MODTRAN model with several input parameters related to solar and sensor geometry, radiometric specification of sensor, and atmospheric condition. Atmospheric water vapour contents image was generated directly from a few absorption bands of Hyperion data themselves and used one of input parameters. This new atmospheric correction method was tested on the Hyperion data acquired on June 3, 2001 over Seoul area. Reflectance spectra of several known targets corresponded with the typical pattern of spectral reflectance on the atmospherically corrected Hyperion image, although further improvement to reduce sensor noise is necessary.

C-EPS (C-type Electric Power Steering) 시뮬레이터 설계 및 제어 알고리즘 개발 (Design of C-EPS (Column type - Electric Power Steering) Simulator and Development of Control Algorithm)

  • 박명욱;문희창;김정하
    • 제어로봇시스템학회논문지
    • /
    • 제16권6호
    • /
    • pp.566-571
    • /
    • 2010
  • EPS (Electric Power Steering) is important device for improving vehicle's dynamics and static performances. This paper deals with simulator design for C-EPS (Colum type-EPS), development assist and returnability control algorithm. First, C-EPS system model was simply designed because EPS system is complex control system that has many unknown variables. These parameters were simplified through assumptions. Second, C-EPS simulator was designed for development of control algorithm. This simulator has SAS (Steering Angle Sensor), dual torque sensor, dual load cell for measuring rack force, dual linear actuator for generating tire force and Data Acquisition System. Using this simulator, control methods ware tested. Third, control algorithm was designed for torque assist and returnability. Assist torque map and returnability torque map were found by lots of simulation test. These torque maps were tuned for EPS actuator control. The simulation result was compared with non-EPS system result. In this research, the C-EPS simulator was designed for development of control algorithm about torque assistant and returnability. Using this simulator, control algorithm was improved.

Biological smart sensing strategies in weakly electric fish

  • Nelson, Mark E.
    • Smart Structures and Systems
    • /
    • 제8권1호
    • /
    • pp.107-117
    • /
    • 2011
  • Biological sensory systems continuously monitor and analyze changes in real-world environments that are relevant to an animal's specific behavioral needs and goals. Understanding the sensory mechanisms and information processing principles that biological systems utilize for efficient sensory data acquisition may provide useful guidance for the design of smart-sensing systems in engineering applications. Weakly electric fish, which use self-generated electrical energy to actively sense their environment, provide an excellent model system for studying biological principles of sensory data acquisition. The electrosensory system enables these fish to hunt and navigate at night without the use of visual cues. To achieve reliable, real-time task performance, the electrosensory system implements a number of smart sensing strategies, including efficient stimulus encoding, multi-scale virtual sensor arrays, task-dependent filtering and online subtraction of sensory expectation.

Merging of Satellite Remote Sensing and Environmental Stress Model for Ensuring Marine Safety

  • Yang, Chan-Su;Park, Young-Soo
    • 한국항해항만학회지
    • /
    • 제27권6호
    • /
    • pp.645-652
    • /
    • 2003
  • A virtual vessel traffic control system is introduced to contribute to prevent a marine accident such as collision and stranding from happening. Existing VTS has its limit. The virtual vessel traffic control system consists of both data acquisition by satellite remote sensing and a simulation of traffic environment stress based on the satellite data, remotely sensed data And it could be used to provide timely and detailed information about the marine safety, including the location, speed and direction of ships, and help us operate vessels safely and efficiently. If environmental stress values are simulated for the ship information derived from satellite data, proper actions can be taken to prevent accidents. Since optical sensor has a high spatial resolution, JERS satellite data are used to track ships and extract their information. We present an algorithm of automatic identification of ship size and velocity. It lastly is shown that based on ship information extracted from JERS data, a qualitative evaluation method of environmental stress is introduced.

Dextrous sensor hand for the intelligent assisting system - IAS

  • Hashimoto, Hideki;Buss, Martin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.124-129
    • /
    • 1992
  • The goal of the proposed Intelligent Assisting System - IAS is to assist human operators in an intelligent way, while leaving decision and goal planning instances for the human. To realize the IAS the very important issue of manipulation skill identification and analysis has to be solved, which then is stored in a Skill Data Base. Using this data base the IAS is able to perform complex manipulations on the motion control level and to assist the human operator flexibly. We propose a model for manipulation skill based on the dynamics of the grip transformation matrix, which describes the dynamic transformation between object space and finger joint space. Interaction with a virtual world simulator allows the calculation and feedback of appropriate forces through controlled actuators of the sensor glove with 10 degrees-of-freedom. To solve the sensor glove calibration problem, we learn the nonlinear calibration mapping by an artificial neural network(ANN). In this paper we also describe the experimental system setup of the skill acquisition and transfer system as a first approach to the IAS. Some simple manipulation examples and simulation results show the feasibility of the proposed manipulation skill model.

  • PDF

펄스지령법에 의한 머시닝센터상의 3차원 형상정보 수집 (The collecting of 3dimensional data from the way of pulse generating at the M/C)

  • 강효석;임한석;김선호;안중환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.396-399
    • /
    • 1995
  • In this study, Acquisition system is proposed to acquire 3 dimensional data of the free surface model using direct pulse control to machining center. Todo this, I/F to connect between manual operating handle and computer is made, and 3 dimensional shape measuring algorithm using Z-map is applied. The 3 dimensional shape data of the free surface model measured by laser displacement sensor and electric touch probe are achieved directly. Performance of the proposed system is evaluated through measurement of various shape model.

  • PDF

Automated texture mapping for 3D modeling of objects with complex shapes --- a case study of archaeological ruins

  • Fujiwara, Hidetomo;Nakagawa, Masafumi;Shibasaki, Ryosuke
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1177-1179
    • /
    • 2003
  • Recently, the ground-based laser profiler is used for acquisition of 3D spatial information of a rchaeological objects. However, it is very difficult to measure complicated objects, because of a relatively low-resolution. On the other hand, texture mapping can be a solution to complement the low resolution, and to generate 3D model with higher fidelity. But, a huge cost is required for the construction of textured 3D model, because huge labor is demanded, and the work depends on editor's experiences and skills . Moreover, the accuracy of data would be lost during the editing works. In this research, using the laser profiler and a non-calibrated digital camera, a method is proposed for the automatic generation of 3D model by integrating these data. At first, region segmentation is applied to laser range data to extract geometric features of an object in the laser range data. Various information such as normal vectors of planes, distances from a sensor and a sun-direction are used in this processing. Next, an image segmentation is also applied to the digital camera images, which include the same object. Then, geometrical relations are determined by corresponding the features extracted in the laser range data and digital camera’ images. By projecting digital camera image onto the surface data reconstructed from laser range image, the 3D texture model was generated automatically.

  • PDF

SAR RETURN SIGNAL SYNTHESIS IN TIME-SPATIAL DOMAIN

  • Shin Dongseok;Kim Moon-Gyu;Kwak Sunghee
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.729-732
    • /
    • 2005
  • This paper describes a time-spatial domain model for simulating raw data acquisition of space-borne SAR system. The position, velocity and attitude information of the platform at a certain time instance is used for deriving sensor-target model. Ground target is modelled by a set of point scatters with reflectivity and two-dimensional ground coordinates. The signal received by SAR is calculated for each slow and fast time instance by integrating the reflectivity and phase values from all target point scatters. Different from frequency domain simulation algorithms, the proposed time domain algorithm can provide fully physical modelling of SAR raw data simulation without any assumptions or approximations.

  • PDF