• Title/Summary/Keyword: Sensor Acceleration

Search Result 721, Processing Time 0.032 seconds

A Research for Improvement of WIM System by Abnormal Driving Patterns Analysis (비정상 주행패턴 분석을 통한 WIM 시스템 개선 연구)

  • Park, Je-U;Kim, Young-Back;Chung, Kyung-Ho;Ahn, Kwang-Seon
    • Journal of Internet Computing and Services
    • /
    • v.11 no.4
    • /
    • pp.59-72
    • /
    • 2010
  • WIM(Weigh-In-Motion) is the system measuring the weight of the vehicle with a high-speed. In the existing WIM system, vehicle weight is measured based on the constant speed and the error ratio has 10%. However, because of measuring the driving pattern, that is abnormal driving pattern which is like the acceleration and down-shift of the drivers, it has the error ratio which is bigger than the real. In order to it reduces the error ratio of WIM system, the improved WIM system needs to find the abnormal driving pattern. In order to reducing the error ratio of these WIM systems, the improved WIM system can find abnormal driving patterns. In this paper, the improved WIM system which analyzes the abnormality driving pattern influencing on the error ratio of WIM system of an existing and minimizes the error span is designed. The improved WIM system has the multi step loop structure of adding the loop sensor to an existing system. In addition, the measure function defined as an intrinsic is improved and the weight measured by the abnormal driving pattern is amended. The analysis of experiment result improved WIM system can know the fact that the error span reduces by 8% less than in the existing the maximum average sampling error 22.98%.

A DSP-based Controller for a Small Humanoid Robot (DSP를 사용한 소형 인간형 로봇의 제어기)

  • Cho Jeong-San;Sung Young-Whee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.4
    • /
    • pp.191-197
    • /
    • 2005
  • Biped walking is the main feature of a humanoid robot. In a biped walking robot, there are many actuators to be controlled and many sensors to be interfaced. In this paper, we propose a DSP-based controller for a miniature biped walking robot with 21 RC servo motors. The proposed controller has a hierarchical structure; a host PC, a DSP-based main controller, and an auxiliary controller with an FPGA chip. The host PC generates and transmits the robot walking data for given walking parameters such as stride, walking period, etc. The main controller implemented with a TMS320LF2407A controls 21 RC servo motors via the auxiliary controller. We also perform some experiments for balancing motion and walking on a slope terrain with interfacing a 2-axis acceleration sensor and a TMS320LF2407A.

  • PDF

Dynamic Response Characteristics of Embankment Model for Various Slope Angles (다양한 경사를 가지는 제방모형의 지반 증폭 특성)

  • Kim, Hoyeon;Jin, Yong;Lee, Yonghee;Kim, Hak-sung;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.2
    • /
    • pp.35-46
    • /
    • 2020
  • In this study, the dynamic response characteristics of the embankment model were analyzed using shaking table experiments. Laminar shear box was used to minimize the boundary effect of the model. The ratio of the vertical length to horizontal length of the slopes were 1:1, 1:1.5, and 1:2. The sensor array which is consist of 12 accelerometers was used to measure acceleration time-histories at each location of the slope model. The dynamic response characteristics of the models were analyzed for sine wave, sinesweep wave, and artificial earthquake wave in this study. The experimental results show that the dynamic response of the embankment model is increased with the slope angle. Furthermore, the experimental setup used in this study was verified with the comparative analysis between experimental results and 1-D analytical simulation on the flat ground model.

Software Architecture of a Wearable Device to Measure User's Vital Signal Depending on the Behavior Recognition (행동 인지에 따라 사용자 생체 신호를 측정하는 웨어러블 디바이스 소프트웨어 구조)

  • Choi, Dong-jin;Kang, Soon-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.3
    • /
    • pp.347-358
    • /
    • 2016
  • The paper presents a software architecture for a wearable device to measure vital signs with the real-time user's behavior recognition. Taking vital signs with a wearable device help user measuring health state related to their behavior because a wearable device is worn in daily life. Especially, when the user is running or sleeping, oxygen saturation and heart rate are used to diagnose a respiratory problems. However, in measuring vital signs, continuosly measuring like the conventional method is not reasonable because motion artifact could decrease the accuracy of vital signs. And in order to fix the distortion, a complex algorithm is not appropriate because of the limited resources of the wearable device. In this paper, we proposed the software architecture for wearable device using a simple filter and the acceleration sensor to recognize the user's behavior and measure accurate vital signs with the behavior state.

Shock Attenuation Mechanism in Drop Landing According to the Backpack Weight Changes (드롭랜딩 시 backpack 중량 변화에 따른 충격 흡수 기전)

  • Choi, Chi-Sun;Nam, Ki-Jeong;Shin, In-Sik;Seo, Jung-Suk;Eun, Seon-Deok;Kim, Suk-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.25-35
    • /
    • 2006
  • The purpose of this study was to investigate the shock attenuation mechanisms while varying the loads in a backpack during drop landing. Ten subjects (age: $22.8{\pm}3.6$, height: $173.5{\pm}4.3$, weight: $70.4{\pm}5.2$) performed drop landing under five varying loads (0, 5kg. 10kg. 20kg. 30kg). By employing two cameras (Sony VX2100) the following kinematic variables (phase time, joint rotational angle and velocity of ankle, knee and hip) were calculated by applying 2D motion analysis. Additional data, i.e. max vertical ground force (VGRF) and acceleration, was acquired by using two AMTI Force plates and a Noraxon Inline Accelerometer Sensor. Through analysing the power spectrum density (PSD), drop landing patterns were classified into four groups and each group was discovered to have a different shock attenuation mechanism. The first pattern that appeared at landing was that the right leg absorbed most of the shock attenuation. The second pattern to appear was that subject quickly transferred the load from the right leg to the left leg as quickly as possible. Thus, this illustrated that two shock attenuation mechanisms occurred during drop landing under varying load conditions.

Development of Personal Training System Using Functional Game for Rehabilitation Training (재활훈련 기능성 게임 콘텐츠를 이용한 Personal Training System 개발)

  • Ryu, Wan-Seok;Kang, Han-Soo;Kim, Hyu-Jeong;Lim, Chang-Joo;Chung, Sung-Taek
    • Journal of Korea Game Society
    • /
    • v.9 no.3
    • /
    • pp.121-128
    • /
    • 2009
  • In this paper, we have developed the balance board with electronic devices to use in various fields of remedial and physical balance exercise with interesting game and the functional game. Rehabilitation training using a funny game will be effective for patient's rehabilitation training. A Personal training system uses a balance board with an acceleration sensor and the game controlled by physical balance. To evaluate the operation of the developed system, we developed rehabilitation training game. The proposed game can be applicable to rehabilitation and balance training, and suggested game interface method could use a commercial game with various function through our emulator.

  • PDF

Near-field Data Exchange by Motion Recognition of mobile phone (모바일 폰의 모션 인식에 의한 근거리 데이터 교환)

  • Hwang, Tae-won;Seo, Jung-hee;Park, Hung-bog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.800-801
    • /
    • 2017
  • Location-based services (LBS) are used in various applications such as emergency support, navigation, location, traffic routes, information gathering, and entertainment due to the rapid growth of information communication technologies and mobile phones. In general, locations are represented by coordinates and are related to terrain. These are of great interest in mobile-based data transmission. This paper proposes a method to exchange the contact of the other party by detecting the movement of the mobile phone of the individual user based on the location-based service. The proposed method extracts motion using the acceleration sensor of the mobile phone and transmits the location and time information to the server when the motion continues for a predetermined time. Attempts to establish a connection between users who are experiencing motion in mobile phones in the short distance have been made from the server. Once the connection between the users is made, the encrypted contact is received from the server. Experimental results show that the proposed method can exchange data by minimizing the processing in the handset compared with the existing method.

  • PDF

Design and Implementation of Real-Time Indirect Health Monitoring System for the Availability of Physical Systems and Minimizing Cyber Attack Damage (사이버 공격 대비 가동 물리장치에 대한 실시간 간접 상태감시시스템 설계 및 구현)

  • Kim, Hongjun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.6
    • /
    • pp.1403-1412
    • /
    • 2019
  • Effect of damage and loss cost for downtime is huge, if physical devices such as turbines, pipe, and storage tanks are in the abnormal state originated from not only aging, but also cyber attacks on the control and monitoring system like PLC (Programmable Logic Controller). To improve availability and dependability of the physical devices, we design and implement an indirect health monitoring system which sense temperature, acceleration, current, etc. indirectly, and put sensor data into Influx DB in real-time. Then, the actual performance of detecting abnormal state is shown using the indirect health monitoring system. Analyzing data are acquired using the real-time indirect health monitoring system, abnormal state and security threats can be double-monitored and lower maintenance cost utilizing prognostics and health management.

A implement Android OS-based black-box system in the vehicle (안드로이드 OS 기반의 차량용 블랙박스 시스템 구현)

  • Song, Min-Seob;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.483-486
    • /
    • 2011
  • Recently, large and small vehicle accidents due to human life and property due to loss of function similar to that used on the plane with a black box mounted on the vehicle by the driver of the vehicle in order to analyze the cause of the accident vehicle you are using a black box. The black box used in the existing operating system, unlike the Android OS portability is good compared to other OS support an open platform for the development of additional costs or proven, which includes many libraries need to use any external libraries there are no advantages. In addition, the existing black box on the incident can not be sent automatically to report an accident notification has a problem. In this paper, another advantage of the OS used in a black box with an Android-based acceleration sensor on the test board GPS module and smart phones using the information, and incident detection capability to send a message to the specified number of black boxes with was implemented.

  • PDF

Measurement of Inertia of Turbocharger Rotor in a Passenger Vehicle (승용차용 터보과급기 로터의 관성모멘트 측정)

  • Chung, Jin Eun;Lee, Sangwoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.33-38
    • /
    • 2016
  • The turbocharger is an essential component to realize the engine down-sizing. The moment of inertia of turbocharger rotor is an important parameter with respect to acceleration performance of the vehicle. It can be calculated from the CAD software based the geometry data and the material properties. But the accurate value of the inertia of turbocharger rotor must be measured through the experimental method. In this study, the measurement of moment of inertia of turbocharger rotor for 2.0 L spark-ignition engine was carried out. First, an experimental equipment using a trifilar method was designed and fabricated. Some optical devices, that is, photo sensor, counter, convex lens, etc, were used to increase the accuracy of the measurement. Second, error sensitivity for the equipment was analyzed. The error of period time and the radius can give big affects to the accuracy of the moment of inertia. When the amount of error of these two were each 1.0 %, maximum error of the moment of inertia was under 3.0 %. Third, the calibration for the equipment was performed using a calibration rotor which has similar shape to turbine rotor but simple. Calculated value from CAD software and measured one for the calibration rotor were compared. The total error of the equipment and the measurement is about 1.3 %. This result shows that the equipment can give the good result with resonable accuracy. Finally the moment of inertia of the turbine rotor and compressor wheel were measured. The coefficient of variations, the ratio of standard deviation to mean value, were reasonably small at 0.57 % and 0.73 % respectively. Therefore this equipment is suitable for the measurement of the moment of inertia of the turbine rotor and compressor wheel.