• Title/Summary/Keyword: Sensor Acceleration

Search Result 721, Processing Time 0.034 seconds

The NCF Algorithm for the Control of an Electro-mechanical Active Suspension System (전기-기계식 능동 현가장치 제어를 위한 NCF 알고리즘)

  • Han, In-Sik;Lee, Yoon-Bok;Choi, Kyo-Jun;Kim, Jae-Yong;Jang, Myeong-Eon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.1-9
    • /
    • 2012
  • The NCF control algorithm for an active suspension system was proposed and investigated. The NCF algorithm using spring dynamic variation force and suspension relative velocity was applied to the 1/4 vehicle model and numerical analysis was performed. Vehicle's performances such as vehicle displacement, vehicle acceleration, suspension deflection, tire deflection and absorbed power were calculated and compared with those of the passive, semi-active and LQR active suspension system that use full state feedback. Numerical results show that the proposed NCF active suspension system has superior performance compared with the passive and semi-active suspension system and has very similar performance compared with the LQR active suspension system. So the proposed NCF algorithm is considered as a highly practical algorithm because it requires only one displacement sensor in a 1/4 vehicle model.

An Experimental Study upon Modeling and Control of Coupled Engine and Generator System (엔진-발전기 시스템 모델링 및 제어특성에 관한 실험적 연구)

  • 송승호;정세종;오정훈;함윤영;최용각;이광희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.163-169
    • /
    • 2003
  • Modeling of engine-generator system and its control responses are investigated using high performance generator controller. The nonlinear engine is modeled using mean torque production model based on experimental engine map. In case of diesel engine. the amount of injected fief is decided by engine controller depending on the APS(Acceleration Position Sensor) value. An electromechanical generator model contains electrical circuits and moment of inertia. The generator controller maximizes the performance of generator using decoupling and linearized current feedback control. The generator control system consists of 3-phase IGBT inverter and controller board based on 32 bit floating point DSP. Field oriented control algorithm with digital current feedback control at 10kHz sampling enabled high performance torque and speed control of induction machine. Not only the steady state but also the transient state responses can be evaluated through a batch test of the engine generator system. Developed engine and generator modeling and control can be utilized in various applications such as Series Hybrid Electric Vehicle(SHEV), engine-generator for emergency, and other hybrid generation systems.

Seismic responses of a metro tunnel in a ground fissure site

  • Liu, Nina;Huang, Qiang-Bing;Fan, Wen;Ma, Yu-Jie;Peng, Jian-Bing
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.775-781
    • /
    • 2018
  • Shake table tests were conducted on scaled tunnel model to investigate the mechanism and effect of seismic loadings on horseshoe scaled tunnel model in ground fissure site. Key technical details of the experimental test were set up, including similarity relations, boundary conditions, sensor layout, modelling methods were presented. Synthetic waves and El Centro waves were adopted as the input earthquake waves. Results measured from hanging wall and foot wall were compared and analyzed. It is found that the seismic loadings increased the subsidence of hanging wall and lead to the appearance and propagation of cracks. The values of acceleration, earth pressure and strain were greater in the hanging wall than those in the foot wall. The tunnel exhibited the greatest earth pressure on right and left arches, however, the earth pressure on the crown of arch is the second largest and the inverted arch has the least earth pressure in the same tunnel section. Therefore, the effect of the hanging wall on the seismic performance of metro tunnel in earth fissure ground should be considered in the seismic design.

Estimated Position of Sea-Surface Beacon Using DWT/UKF (DWT/UKF를 이용한 수면 BEACON의 위치추정)

  • Yoon, Ba-Da;Yoon, Ha-Neul;Choi, Sung-He;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.341-348
    • /
    • 2013
  • A location estimation algorithm based on the sea-surface beacon is proposed in this paper. The beacon is utilized to provide ultrasonic signals to the underwater vehicles around the beacon to estimate precise position of underwater vehicles (ROV, AUV, Diver robot), which is named as USBL (Ultra Short Baseline) system. It utilizes GPS and INS data for estimating its position and adopts DWT (Discrete Wavelet Transform) de-noising filter and UKF (Unscented KALMAN Filter) elaborating the position estimation. The beacon system aims at estimating the precise position of underwater vehicle by using USBL to receive the tracking signals. The most important one for the precise position estimation of underwater vehicle is estimating the position of the beacon system precisely. Since the beacon is on the sea-waves, the received GPS signals are noisy and unstable most of times. Therefore, the INS data (gyroscope sensor, accelerometer, magnetic compass) are obtained at the beacon on the sea-surface to compensate for the inaccuracy of the GPS data. The noises in the acceleration data from INS data are reduced by using DWT de-noising filter in this research. Finally the UKF localization system is proposed in this paper and the system performance is verified by real experiments.

Development of a Simulator for a Mobile Robot Based on iPhone (아이폰 기반의 이동로봇 시뮬레이터 개발)

  • Kim, Dong Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.29-34
    • /
    • 2013
  • This study presents the remote control of a mobile robot using iPhone based on ad hoc communication. Two control interfaces are proposed to control a mobile robot using iPhone : Remote control by a user and autonomous control. To evaluate the effectiveness of algorithms for trajectory following, a simulator are developed where a virtual robot follows a referenced trajectory in a monitor by iPhone interface. In the proposed simulator, some algorithms are tested how they work well or not for trajectory following of a mobile robot. Comparative results by remote user control and autonomous control are shown. Results of an experiment show that the proposed simulator can be effectively used for testing the effectiveness of autonomous tracking algorithms.

Implement for Addiction Patient-Care System based on Status-Information Recognition in Ubiquitous-Zone (u-Zone에서 상태정보 감지를 통한 중독환자 케어 시스템 구현)

  • Lim, Myung-Jae;Lee, Seung-Ho;Lee, Ki-Young;Choi, Mi-Lim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.123-128
    • /
    • 2010
  • ularly, a points of view Health-care system, it can reduce costs and efforts in order to management of patients. However, Health-care system keep a level of service for person and extends of hospital inner parts system. Although the rate of an addict grow by alcoholic but it is difficult to manage and diagnosis because of patient data gathering. Therefore in this thesis, it is proposed to patient data gathering and monitering method in u-zone. It can collect patient data by pulse, temperature and acceleration sensor and it can diagnosis correct based on emotion change data.

Design of Falling Recognition Application System using Deep Learning

  • Kwon, TaeWoo;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.120-126
    • /
    • 2020
  • Studies are being conducted regarding falling recognition using sensors on smartphonesto recognize falling in human daily life. These studies use a number of sensors, mostly acceleration sensors, gyro sensors, motion sensors, etc. Falling recognition system processes the values of sensor data by using a falling recognition algorithm and classifies behavior based on thresholds. If the threshold is ambiguous, the accuracy will be reduced. To solve this problem, Deep learning was introduced in the behavioral recognition system. Deep learning is a kind of machine learning technique that computers process and categorize input data rather than processing it by man-made algorithms. Thus, in this paper, we propose a falling recognition application system using deep learning based on smartphones. The proposed system is powered by apps on smartphones. It also consists of three layers and uses DataBase as a Service (DBaaS) to handle big data and address data heterogeneity. The proposed system uses deep learning to recognize the user's behavior, it can expect higher accuracy compared to the system in the general rule base.

Security Communication Implementation and Experiments for USN Fire Prevention System (USN 화재방재 시스템을 위한 보안 통신 구현 및 실험)

  • Kim, Young-Hyuk;Lim, Il-Kwon;Lee, Jae-Kwang
    • The Journal of Korean Association of Computer Education
    • /
    • v.13 no.6
    • /
    • pp.99-104
    • /
    • 2010
  • USN Fire Prevention System is an intelligent system that detects the fire through the value which has got from a sensor such as temperature, humidity, intensity of illumination, acceleration, carbon dioxide(CO2) and so on. And then send it to the operator also use the algorithmic fire detection to operate fire extinguish system on. It is among U-Disaster Prevention System which has prevented fire lately. Configuration of the packet was designed to make the most of lightweight and fast processing for low power consumption. Recently listed in the encryption algorithm is applied each DES, 3DES, AES and HIGHT. So objective was to faster encryption than encryption of high-performance finally domestic standard encryption algorithm HIGHT were suitable for the fire prevention system needed frequent sensing time.

  • PDF

Vegetables Cultivation by Characteristics Changes of Water with Magnetic Field Effect (자기장 영향 하에서의 수질 특성 변화에 따른 채소재배)

  • Lee, Hyung-Joo;Hwang, Jae-Moon
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.412-416
    • /
    • 2006
  • A magnetic field oscillator was designed and made. The oscillator was installed around a water pipe and radiated into water which was provided for vegetables cultivation. The oscillator was made with a helmholtz coil and installed a magnetic field sensor inside. The class E amplifier circuit with frequency variance was also used. Hydroponic and soil cultural methods were used for cultivation of lettuce and chinese cabbage with magnetic field water and without. Vitamin C ingredients in the lettuce and chinese cabbage which were grown with magnetic field water were 2.8 times and 1.2 times higher than without the magnetic water. Moreover, the growth acceleration effect of vegetables was shown in lettuce cultivated with the magnetic field water.

Measurement of the Dynamic Transmission Error of Helical Gears by the Accelerometers (가속도계에 의한 헬리컬 기어의 동적 전달오차의 측정)

  • Kim, Dae-Sik;Cho, Do-Hyun;Park, Chan-Il;Choi, Deo-Kki;Park, Chan-Gook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1720-1727
    • /
    • 2003
  • The object of this work is to develop the measurement method of the transmission error of the helical gears. For this purpose, experimental set up is designed by 3D CAD software. It consists of the motor, inverter, powdered brake equipment, torque sensor and helical gearbox. In this study, tangential linear accelerometers were used as the methods for the transmission error measurement. the acceleration signals are transmitted to the signal conditioners through the slip rings and the transmission errors are obtained by a specially designed circuit board. The transmission errors are analyzed in the frequency domain. As a result, The periodicity of the transmission error is confirmed in the mesh frequency and its harmonics. The magnitude of harmonic components is very dependent on the natural frequencies of the gear system. It usually increases with the rotational speed. However, it does not always increase with torque.