• Title/Summary/Keyword: Sensor Acceleration

Search Result 721, Processing Time 0.03 seconds

Acceleration Sensor Using Optical Fibers and Film Gratings (광섬유와 필름격자를 이용한 가속도 센서)

  • Lee, Youn-Jea;Jo, Jae-Heung;Kwon, Il-Bum;Seo, Dae-Cheol;Lee, Nam-Kwon
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.175-181
    • /
    • 2008
  • We develop a fiber optic acceleration sensor with LED, PD, POF, and a cantilever beam, having film grating at the edge of the beam. Light is transmitted from LED to PD through the film grating. When the cantilever beam moves by external vibration, output light is modulated as sinusoidal signals. The characteristics of output signals are dominated by the spacing of the film grating and also by the size and the elasticity of the beam. Two output signals, having constant initial phase difference, are obtained by two gratings with 90 degree phase difference. Those two signals are used to determine phase angle, which is proportional to the displacement of the beam. Finally, the acceleration is determined from conversion equation between displacement and acceleration. This sensor is designed for monitoring the vibration of large and complex building in the low frequency range of below 7 Hz, and is particularly suitable to measure acceleration in electromagnetic environments.

Hierarchical Deep Belief Network for Activity Recognition Using Smartphone Sensor (스마트폰 센서를 이용하여 행동을 인식하기 위한 계층적인 심층 신뢰 신경망)

  • Lee, Hyunjin
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1421-1429
    • /
    • 2017
  • Human activity recognition has been studied using various sensors and algorithms. Human activity recognition can be divided into sensor based and vision based on the method. In this paper, we proposed an activity recognition system using acceleration sensor and gyroscope sensor in smartphone among sensor based methods. We used Deep Belief Network (DBN), which is one of the most popular deep learning methods, to improve an accuracy of human activity recognition. DBN uses the entire input set as a common input. However, because of the characteristics of different time window depending on the type of human activity, the RBMs, which is a component of DBN, are configured hierarchically by combining them from different time windows. As a result of applying to real data, The proposed human activity recognition system showed stable precision.

Implementation of the Electronic Sensor System for Pedestrian Safety Based on Embedded (임베디드 기반의 보행자 안전을 위한 전자감응시스템 구현)

  • Ryu, Seung-Han;Park, Sung-Won;Moon, Geon-Hee;Jung, Hoe-kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1825-1830
    • /
    • 2015
  • In some cases, despite the pedestrian jaywalking pedestrian traffic lights to red, or even wait for the walk signal to stand down in the driveway. If this is the case may be liable to lead to a traffic accident. Thus, using an infrared sensor wateuna adopted the approach that the warning announcement when a pedestrian enters the driveway, curved pedestrian crossing the intersection in this case, it is difficult to install. In this paper, we propose a Fitness referral system utilizes a built-in sensor of the Android mobile devices. For this purpose, the sensor is a proximity sensor using an acceleration sensor. The proximity sensor has a number of disadvantages compared to the high precision battery power, the acceleration sensor accuracy, fast response time, on the other hand, the disadvantage is the lower. Close to reduce battery consumption of the sensor, BMI of the user sensor control mechanism and increase the accuracy of the acceleration sensor (Body Mass Index) obtained after the index was applied to the recommendation algorithm, which like the movement mechanism.

A Study of Simple Sleep Apnea Predictive Device Using SpO2 and Acceleration Sensor

  • Woo, Seong-In;Lee, Merry;Yeom, Hojun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.71-75
    • /
    • 2019
  • Sleep apnea is a disease that causes various complications, and the polysomnography is expensive and difficult to measure. The purpose of this study is to develop an unrestricted wearable monitoring system so that patients can be examined in a familiar environment. We used a method to detect sleep apnea events and to determine sleep satisfaction by non-constrained method using SpO2 measurement sensor and 3-axis acceleration sensor. Heart rate and SpO2 were measured at the finger using max30100. After acquiring the SpO2 data of the user in real time, the apnea measurement algorithm was used to transmit the number of apnea events of the user to the mobile phone using Bluetooth (HC-06) on the wrist. Using the three-axis acceleration sensor (mpu6050) attached to the upper body, the number of times of tossing and turning during sleep was measured. Based on this data, this algorithm evaluates the patient's tossing and turning during sleep and transmits the data to the mobile phone via Bluetooth. The power source used 9 volts battery to operate Arduino UNO and sensors for portability and stability, and the data received from each sensor can be used to check the various degree between sleep apnea and sleep tossing and turning on the mobile phone. Through thisstudy, we have developed a wearable sleep apnea measurement system that can be easily used at home for the problem of low sleep efficiency of sleep apnea patients.

Development of Wearable Devices Equipped with Multi Sensor that can Analyze and Manage Symptoms of Parkinson's Patients as data (파킨슨 환자의 증상들을 데이터화하여 분석하고 관리할 수 있는 다양한 센서가 탑재된 웨어러블 디바이스 개발)

  • Kim, SangHyeok;Jeon, YeongJun;Kang, SoonJu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.19-24
    • /
    • 2022
  • Through the development and dissemination of embedded devices, studies that may help patients are rapidly emerging. Recently, as wearable devices have become one of the ways to diagnose diseases in daily life, they are being studied as a way to assist severely ill patients to lead their daily lives. Among them, a method of detecting and giving signals to detect and solve symptoms using acceleration sensors to diagnose Parkinson's disease is being studied, and there is no study to measure and analyze various factors that can affect Parkinson's disease. To solve them, we designed and developed a wearable device, P-Band, with various sensors capable of diagnosing related symptoms, including acceleration sensors capable of diagnosing Parkinson's disease. In this paper, the overall structure of the P-Band and the description and operation method of the measurable sensors are presented. In addition, it was confirmed that the symptoms of Parkinson's patients could be determined complexly through the results measured in actual patients.

Silicon Piezoresistive Acceleration Sensor with Compensated Square Pillar Type of Mass (사각뿔 형태의 Mass 보상된 실리콘 압저항형 가속도 센서)

  • Sohn, Byoung-Bok;Lee, Jae-Gon;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.19-25
    • /
    • 1994
  • When etching rectangular convex corners of silicon using anisotropic etchants such as KOH, deformation of the edges always occurs due to undercutting. Therefore, it is necessary to correct the mass pattern for compensation. Experiments for the compensation method to prevent this phenomenon were carried out. In the result, the compensation pattern of a regular square is suitable for acceleration sensors considering space. With this consequence, silicon piezoresistive acceleration sensor with compensated square pillar type of mass has been fabricated using SDB wafer.

  • PDF

Development of Life Test Specification for Catalytic Gas Sensor (접촉연소식 가스센서의 수명시험기준 개발)

  • Kang Jun-Ku;Park Jung-Won;Hwang Dong-Hoon;Ham Jung-Keol
    • Journal of Applied Reliability
    • /
    • v.6 no.1
    • /
    • pp.37-50
    • /
    • 2006
  • The accelerated life tests of the catalytic gas sensor were performed at three different gas concentration conditions. From the test data, the power-Weibull model was estimated and the acceleration factor between test condition 25%LEL(Lowe Explosive Limit) and use condition 5%LEL was about 3 according to this acceleration model. Using this acceleration factor, life test specification for qualifying that B10 lifetime of the catalytic gas sensor meets the goal lifetime (5 years) was designed.

  • PDF

A Triple Nested PID Controller based on Sensor Fusion for Quadrotor Attitude Stabilization (쿼드로터 자세 안정화를 위한 센서융합 기반 3중 중첩 PID 제어기)

  • Cho, Youngwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.871-877
    • /
    • 2018
  • In this paper, we propose a triple nested PID control scheme for stable hovering of a quadrotor and propose a complementary filter based sensor fusion technique to improve the performance of attitude, altitude and velocity measurement. The triple nested controller has a structure in which a double nested attitude controller that has the angular velocity PD controller in inner loop and the angular PI controller in outer loop, is nested in a velocity control loop to enable stable hovering even in the case of disturbance. We also propose a sensor fusion technique by applying a complementary filter in order to reduce the noise and drift error included in the acceleration and gyro sensor and to measure the velocity by fusing image, gyro, and acceleration sensor. In order to verity the performance, we applied the proposed control and measurement scheme to hovering control of quadrotor.

Signal processing of accelerometers for motion capture of human body (인체 동작 인식을 위한 가속도 센서의 신호 처리)

  • Lee, Ji-Hong;Ha, In-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.961-968
    • /
    • 1999
  • In this paper we handle a system that transform sensor data to sensor information. Sensor informations from redundant accelerometers are manipulated to represent the configuration of objects carrying sensors. Basic sensor unit of the proposed systme is composed of 3 accelerometers that are aligned along x-y-z coordination axes of motion. To refine the sensor information, at first the sensor data are fused by geometrical optimization to reduce the variance of sensor information. To overcome the error caused from inexact alignment of each sensor to the coordination system, we propose a calibration technique that identifies the transformation between the coordinate axes and real sensor axes. The calibration technique make the sensor information approach real value. Also, we propose a technique that decomposes the accelerometer data into motion acceleration component and gravity acceleration component so that we can get more exact configuration of objects than in the case of raw sensor data. A set of experimental results are given to show the usefulness of the proposed method as well as the experiments in which the proposed techniques are applied to human body motion capture.

  • PDF

Development of Collision Detection Method Using Estimation of Cartesian Space Acceleration Disturbance (직교좌표계 가속도 외란 추정을 통한 충돌 감지 알고리즘 개발)

  • Jung, Byung-jin;Moon, Hyungpil
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.258-262
    • /
    • 2017
  • In this paper, we propose a new collision detection algorithm for human-robot collaboration. We use an IMU sensor located at the tip of the manipulator and the kinematic behavior of the manipulator to detect the unexpected collision between the robotic manipulator and environment. Unlike other method, the developed algorithm uses only the kinematic relationship between the manipulator joint and the end effector. Therefore, the collision estimation signal is not affected by the error of the dynamics model. The proposed collision detection algorithm detects the collision by comparing the estimated acceleration of the end effector derived from the position, velocity and acceleration trajectories of the robot joints with the actual acceleration measured by the sensor. In simulation, we compare the performance of our method with the conventional Residual Observer (ROB). Our method is less sensitive to the load variation because of the independency on the dynamic modeling of the manipulator.