• Title/Summary/Keyword: Sensor & Cloud Technology

Search Result 121, Processing Time 0.03 seconds

The study of the field customized SW training course design based on the analysis of the field suitability of the university SW education (대학 SW 교육의 현장 적합도 분석에 기반한 현장 맞춤형 SW 교육 과정 설계에 대한 연구)

  • Cha, Joon Seub
    • Smart Media Journal
    • /
    • v.4 no.4
    • /
    • pp.86-92
    • /
    • 2015
  • Recently, it is entering the hyper connectivity age due to the development of sensor and communication technology. In particular, it is emerging new industries such as the IoT, bigdata, cloud by convergence with the ICT and other industries. Because these industries are high the gravity of the software, the demand for software manpower is increasing rapidly. But university curriculum don't deviate from the traditional curriculum, and lack of positive response to these changes is occurring a mismatch with the industry demand. In this paper, investigate a software curriculums of the four-year university, and will attempt to investigate the perception about the university software course of the corporate perspective. Also, we draw a on-site fitness of universities training course by analysis of importance on software training courses between universities and businesses. Finally, we propose a strategy model for software training course design appropriate for the field.

Real-time Streaming and Remote Control for the Smart Door-Lock System based on Internet of Things (스마트 도어록 시스템을 위한 IoT 기반의 실시간 스트리밍 및 원격 제어)

  • Lee, Sung-Won;Yu, Je-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.565-570
    • /
    • 2015
  • In this paper, we implemented the smart door lock system that control remotely devices using the concept of internet of things. Internet of things is intelligent system that can help devices to communicate with people and devices. And recently internet of things is getting attention because of advance of hardware technology and big data. The smart doorlock system based on internet of things used raspberry pi, sensor and doorlock. Using the smart phone, doorlock can be controlled from the raspberry pi server. And the user can identify some people that is in front of doorlock. also user can check around of doorlock in realtime using the raspberry pi camera.

Development of Augmented Reality Character System based on Markerless Tracking (마커리스 트래킹 기반 증강현실 캐릭터 시스템 개발)

  • Hyun, Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1275-1282
    • /
    • 2022
  • In this study, real-time character navigation using AR lens developed by Nreal is developed. Real-time character navigation is not possible with general marker-based AR because NPC characters must guide while moving in an unspecified space. To replace this, a markerless AR system was developed using Digital Twin technology. Existing markerless AR is operated based on hardware such as GPS, gyroscope, and magnetic sensor, so location accuracy is low and processing time in the system is long, resulting in low reliability in real-time AR environment. In order to solve this problem, using the SLAM technique to construct a space into a 3D object and to construct a markerless AR based on point location, AR can be implemented without any hardware intervention in a real-time AR environment. This real-time AR environment configuration made it possible to implement a navigation system using characters in tourist attractions such as Suncheon Bay Garden and Suncheon Drama Filming Site.

AR-Based Character Tracking Navigation System Development (AR기반 캐릭터 트래킹 네비게이션 시스템 개발)

  • Lee, SeokHwan;Lee, JungKeum;Sim, Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.325-332
    • /
    • 2022
  • In this study, real-time character navigation using AR lens developed by Nreal is developed. Real-time character navigation is not possible with general marker-based AR because NPC characters must guide while moving in an unspecified space. To replace this, a markerless AR system was developed using Digital Twin technology. Existing markerless AR is operated based on hardware such as GPS, gyroscope, and magnetic sensor, so location accuracy is low and processing time in the system is long, which results low reliability in real-time AR environment. In order to solve this problem, using the SLAM technique to construct a space into a 3D object and to construct a markerless AR based on point location, AR can be implemented without any hardware intervention in a real-time AR environment. This real-time AR environment configuration made it possible to implement a navigation system using characters in tourist attractions such as Suncheon Bay Garden and Suncheon Drama Filming Site.

Accuracy Assessment of Environmental Damage Range Calculation Using Drone Sensing Data and Vegetation Index (드론센싱자료와 식생지수를 활용한 환경피해범위 산출 정확도 평가)

  • Eontaek Lim ;Yonghan Jung ;Seongsam Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.837-847
    • /
    • 2023
  • In this study, we explored a method for assessing the extent of damage caused by chemical substances at an accident site through the use of a vegetation index. Data collection involved the deployment of two different drone types, and the damaged area was determined using photogrammetry technology from the 3D point cloud data. To create a vegetation index image, we utilized spectral band data from a multi-spectral sensor to generate an orthoimage. Subsequently, we conducted statistical analyses of the accident site with respect to the damaged area using a predefined threshold value. The Kappa values for the vegetation index, based on the near-infrared band and the green band, were found to be 0.79 and 0.76, respectively. These results suggest that the vegetation index-based approach for analyzing damage areas can be effectively applied in investigations of chemical accidents.

A Study on Smart Home Service System Design to Support Aging in Place (Aging in Place 지원을 위한 스마트 홈 서비스 시스템 설계에 관한 연구)

  • Sim, Sungho
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.249-254
    • /
    • 2019
  • According to the recent expansion of the network environment, the spread of smart devices is continuously increasing. With the spread of smart devices such as smart phones, smart pads and wearables, changes are taking place in smart technologies and IT convergence technologies. The development of smart technology is a key element of the 4th industrial technology. The Fourth Industrial Revolution expanded the new service-based industry by adding intelligence to residential, industrial and production environments using IT convergence and smart devices. Research on providing various services using smart technologies, such as smart home, smart factory, smart farm, and smart healthcare, is being conducted in variety. In particular, There is a sharp rise in smart homes due to the proliferation of IoT devices and the growth of sensor technology, control technology, applications, data management, and cloud services. Smart home services using smart technology provide residents with convenient, beneficial services and environments. Smart home service has complemented the existing home network service, but there still are flaws to be modified. In other words, the spread of smart devices, the development of service provider-oriented services, and the interlocking of services have limitations in providing services in consideration of user environment and user state. In order to solve this problem, this study proposes a smart home service system that considers the situation of the elderly.

Current status and prospects of plant diagnosis and phenomics research by using ICT remote sensing system (ICT 원격제어 system 이용 식물진단, Phenomics 연구현황 및 전망)

  • Jung, Yu Jin;Nou, Ill Sup;Kim, Yong Kwon;Kim, Hoy Taek;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.21-29
    • /
    • 2016
  • Remote Sensing (RS) is a technique to obtain necessary information in a non-contact and non-destructive method by using various sensors on the surface, water or atmospheric phenomena. These techniques combine elements such as sensors, and platform and information communication technology (ICT) for mounting the sensor. ICT has contributed significantly to the success of smart agriculture through quantification and measurement of environmental factors and information such as weather, crop and soil management to distribution and consumption stage, as well as the production stage by the cloud computer. Remote sensing techniques, including non-destructive non-contact bioimaging (remote imaging) is required to measure the plant function. In addition, bioimaging study in plant science is performed at the gene, cellular and individual plant level. Recently, bioimaging technology is considered the latest phenomics that identifies the relationship between the genotype and environment for distinguishing phenotypes. In this review, trends in remote sensing in plants, plants diagnostics and response to environment and status of plants phonemics research were presented.

LSTM-based Fire and Odor Prediction Model for Edge System (엣지 시스템을 위한 LSTM 기반 화재 및 악취 예측 모델)

  • Youn, Joosang;Lee, TaeJin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.2
    • /
    • pp.67-72
    • /
    • 2022
  • Recently, various intelligent application services using artificial intelligence are being actively developed. In particular, research on artificial intelligence-based real-time prediction services is being actively conducted in the manufacturing industry, and the demand for artificial intelligence services that can detect and predict fire and odors is very high. However, most of the existing detection and prediction systems do not predict the occurrence of fires and odors, but rather provide detection services after occurrence. This is because AI-based prediction service technology is not applied in existing systems. In addition, fire prediction, odor detection and odor level prediction services are services with ultra-low delay characteristics. Therefore, in order to provide ultra-low-latency prediction service, edge computing technology is combined with artificial intelligence models, so that faster inference results can be applied to the field faster than the cloud is being developed. Therefore, in this paper, we propose an LSTM algorithm-based learning model that can be used for fire prediction and odor detection/prediction, which are most required in the manufacturing industry. In addition, the proposed learning model is designed to be implemented in edge devices, and it is proposed to receive real-time sensor data from the IoT terminal and apply this data to the inference model to predict fire and odor conditions in real time. The proposed model evaluated the prediction accuracy of the learning model through three performance indicators, and the evaluation result showed an average performance of over 90%.

Smart meter data transmission device and power IT system using LTE and IoT technologies (LTE와 IoT 기술을 이용한 스마트미터 데이터 전송장치와 전력 IT 시스템)

  • Kang, Ki-Beom;Kim, Hong-Su;Jwa, Jeong-Woo;Kim, Ho-Chan;Kang, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.117-124
    • /
    • 2017
  • A Smart Grid is a system that can efficiently use energy by exchanging real-time information in both directions between a consumer and a power supplier using ICT technology on an existing power network. DR(Demand response) is an arrangement in which electricity users can sell the electricity they save to the electricity market when the price of electricity is high or the power system is crisis. In this study, we developed a power meter data transmission device and power IT system that measure the demand information in real-time using a smart meter and transmit it to a cloud server. The power meter data transmission device developed in this study uses alight sensor connected to a Raspberry Pi 3 to measure the number of blinking lamps on the KEPCO meter per unit of power, in order to provide reliable data without any measurement errors with respect to the KEPCO power data. The power measurement data transmission device uses the standard communication protocol, OpenADR 2.0b. The measured data is transmitted to the power IT system, which consists of the VEN, VTN, and calculation program, via the LTE WiFi communication network and stored in its MySQL DB. The developed power measurement data transmission device issues a power supply instruction and performs a peak reduction DR when a power system crisis occurs. The developed power meter data transmission device has the advantage of allowing the user to adjust it every 1 minute, where as the existing smart metering time is fixed at once every 15 minutes.

Sensitivity of COMS/GOCI Measured Top-of-atmosphere Reflectances to Atmospheric Aerosol Properties (COMS/GOCI 관측값의 대기 에어러솔의 특성에 대한 민감도 분석)

  • Lee, Kwon-Ho;Kim, Young-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.559-569
    • /
    • 2008
  • The Geostationary Ocean Color Imager (GOCI) on board the Communication Ocean Meteorological Satellite (COMS), the first geostationary ocean color sensor, requires accurate atmospheric correction since its eight bands are also affected by atmospheric constituents such as gases, molecules and atmospheric aerosols. Unlike gases and molecules in the atmosphere, aerosols can interact with sunlight by complex scattering and absorption properties. For the purpose of qualified ocean remote sensing, understanding of aerosol-radiation interactions is needed. In this study, we show micro-physical and optical properties of aerosols using the Optical Property of Aerosol and Cloud (OPAC) aerosol models. Aerosol optical properties, then, were used to analysis the relationship between theoretical satellite measured radiation from radiative transfer calculations and aerosol optical thickness (AOT) under various environments (aerosol type and loadings). It is found that the choice of aerosol type makes little different in AOT retrieval for AOT<0.2. Otherwise AOT differences between true and retrieved increase as AOT increases. Furthermore, the differences between the AOT and angstrom exponent from standard algorithms and this study, and the comparison with ground based sunphotometer observations are investigated. Over the northeast Asian region, these comparisons suggest that spatially averaged mean AOT retrieved from this study is much better than from standard ocean color algorithm. Finally, these results will be useful for aerosol retrieval or atmospheric correction of COMS/GOCI data processing.