• Title/Summary/Keyword: Sensitivity Prediction

Search Result 708, Processing Time 0.023 seconds

Modeling of PECVD Oxide Film Properties Using Neural Networks (신경회로망을 이용한 PECVD 산화막의 특성 모형화)

  • Lee, Eun-Jin;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.831-836
    • /
    • 2010
  • In this paper, Plasma Enhanced Chemical Vapor Deposition (PECVD) $SiO_2$ film properties are modeled using statistical analysis and neural networks. For systemic analysis, Box-Behnken's 3 factor design of experiments (DOE) with response surface method are used. For characterization, deposited film thickness and film stress are considered as film properties and three process input factors including plasma RF power, flow rate of $N_2O$ gas, and flow rate of 5% $SiH_4$ gas contained at $N_2$ gas are considered for modeling. For film thickness characterization, regression based model showed only 0.71% of root mean squared (RMS) error. Also, for film stress model case, both regression model and neural prediction model showed acceptable RMS error. For sensitivity analysis, compare to conventional fixed mid point based analysis, proposed sensitivity analysis for entire range of interest support more process information to optimize process recipes to satisfy specific film characteristic requirements.

Effect of five PAHs (2-methylnaphthalene, fluorene, dibenzothiophene, phenanthrene, and pyrene) on the embryonic development in the mussel, Mytilus galloprovincialis (지중해담치, Mytilus galloprovincialis의 배 발생에 미치는 다환방향족탄화수소류 (2-methylnaphthalene, fluorene, dibenzothiophene, phenanthrene, pyrene) 의 영향)

  • Sung, Chan-Gyoung;Park, Pan-Soo;Lee, Jong-Hyeon;Lee, Chang-Hoon
    • The Korean Journal of Malacology
    • /
    • v.30 no.3
    • /
    • pp.177-187
    • /
    • 2014
  • Mussels have been commonly used in bioassay for quality assessments of environment. Moreover, several standard protocols for the developmental bioassay of bivalves have been proposed. In this study, the EC50 of polycyclic aromatic hydrocarbons (PAHs) was determined using mussel, Mytilus galloprovincialis embryonic developmental bioassay. To determine the sensitivity of M. galloprovincialis, their fertilized eggs were exposed to five PAHs (2-metylnaphthalene, fluorene, dibenzothiophene, phenanthrene, pyrene). The EC50 of 2-metylnaphthalene, fluorene, dibenzothiophene, phenanthrene, and pyrene were 232, 273, 67.9, 43.2, and $33.1{\mu}g/L$, respectively. The overall sensitivity of M. galloprovincialis in the present developmental bioassay was similar to or more sensitive than that of other marine organisms commonly used in aquatic bioassays. The results of this study could be provide with fundamental data of setting standard for protection of marine life and or can use prediction the aquatic toxicity of PAHs.

Sensitivity Analysis and Parameter Estimation of Activated Sludge Model Using Weighted Effluent Quality Index (가중유출수질지표를 이용한 활성오니공정모델의 민감도 분석과 매개변수 보정)

  • Lee, Won-Young;Kim, Min-Han;Kim, Young-Whang;Lee, In-Beum;Yoo, Chang-Kyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1174-1179
    • /
    • 2008
  • Many modeling and calibration methods have been developed to analyze and design the biological wastewater treatment process. For the systematic use of activated sludge model (ASM) in a real treatment process, a most important step in this usage is a calibration which can find a key parameter set of ASM, which depends on the microorganism communities and the process conditions of the plants. In this paper, a standardized calibration protocol of the ASM model is developed. First, a weighted effluent quality index(WEQI) is suggested far a calibration protocol. Second, the most sensitive parameter set is determined by a sensitive analysis based on WEQI and then a parameter optimization method are used for a systematic calibration of key parameters. The proposed method is applied to a calibration problems of the single carbon removal process. The results of the sensitivity analysis and parameter estimation based on a WEQI shows a quite reasonable parameter set and precisely estimated parameters, which can improve the quality and the efficiency of the modeling and the prediction of ASM model. Moreover, it can be used for a calibration scheme of other biological processes, such as sequence batch reactor, anaerobic digestion process with a dedicated methodology.

Ovarian Malignancy Probability Score (OMPS) for Appropriate Referral of Adnexal Masses

  • Arab, Maliheh;Honarvar, Zahra;Hosseini-Zijoud, Seyed-Mostafa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8647-8650
    • /
    • 2014
  • Background: Ovarian cancer is the most common cancer cause of gynecologic cancer deaths. In order to increase the likelihood of patient survival through primary operation by gyneco-oncologists, an appropriate algorithm for referral is considered here. Materials and Methods: Suspicious adnexal mass cases including ovarian malignancy probability score-1 (OMPS1) scores between 2.3-3.65 are re-evaluated by OMPS2. Sensitivity and specificity of each score were determined. Results: Sensitivity and specificity with a 3.82 score of OMPS2 in the studied subgroup (OMPS1 scores between 2.3-3.65) were 64% and 76.9% respectively. Conclusions: Management of OMPS1 scores of below 2.3 with sensitivity of 100% and above 3.65 with specificity of 72.9% is clear. In the subgroup of cases with OMPS1 score between 2.3-3.65, OMPS2 is helpful for triage with a cutoff score of 3.82.

Sensitivity Analysis of Coupled Horizontal and Torsional Vibration of Hull Girder (선체 저차 수평.비틂 연성 고유진동 감도해석)

  • Dae-Seung Cho;Sa-Soo Kim;Doo-Yong Na
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.105-113
    • /
    • 1999
  • This paper resents a prediction method of natural frequencies of coupled horizontal and torsional vibration of hull girder based on design sensitivity analysis in case of the changes of system parameters. The sensitivity analysis is formulated applying the direct differentiation method and transfer matrix method. In the analysis, warping, shear deformation due to torsion and the continuity condition at the connected part of open and closed hull section are considered. Using the presented method. The affection for natural frequencies by the change of system parameters, especially cargo and added mass and their centers, is numerically investigated for a real large container carrier.

  • PDF

A Study on Sensitivity Analysis for Selecting the Process Parameters in GMA Welding Processes (GMA 용접공정에서 공정변수 선정을 위한 민감도 분석에 관한 연구)

  • Kim, Ill-Soo;Shim, Ji-Yeon;Kim, In-Ju;Kim, Hak-Hyoung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.30-35
    • /
    • 2008
  • As the quality of a weld feint is strongly influenced by process parameters during the welding process, an intelligent algorithms that can predict the bead geometry and shape to accomplish the desired mechanical properties of the weldment should be developed. This paper focuses on the development of mathematical models fur the selection of process parameters and the prediction of bead geometry(bead width, bead height and penetration) in robotic GMA(Gas Metal Arc) welding. Factorial design can be employed as a guide for optimization of process parameters. Three factors were incorporated into the factorial model: arc current, welding voltage and welding speed. A sensitivity analysis has been conducted and compared the relative impact of three process parameters on bead geometry in order to verify the measurement errors on the values of the uncertainty in estimated parameters. The results obtained show that developed mathematical models can be applied to estimate the effectiveness of process parameters for a given bead geometry, and a change of process parameters affects the bead width and bead height more strongly than penetration relatively.

Hyper-Geometric Distribution Software Reliability Growth Model : Generalizatio, Estimation and Prediction (초기하분포 소프트웨어 신뢰성 성장 모델 : 일반화, 추정과 예측)

  • Park, Jung-Yang;Yu, Chang-Yeol;Park, Jae-Hong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2343-2349
    • /
    • 1999
  • The hyper-geometric distribution software reliability growth model (HGDM) was recently developed and successfully applied to real data sets. The HGDM considers the sensitivity factor as a parameter to be estimated. In order to reflect the random behavior of the test-and-debug process, this paper generalizes the HGDM by assuming that the sensitivity factor is a binomial random variable. Such a generalization enables us to easily understand the statistical characteristics of the HGDM. It is shown that the least squares method produces the identical results for both the HGDM and the generalized HGDM. Methods for computing the maximum likelihood estimates and predicting the future outcomes are also presented.

  • PDF

Evaluation Concept of Progressive Collapse Sensitivity of Steel Moment Frame using Energy-based Approximate Analysis (에너지 기반 근사해석을 이용한 철골모멘트골조의 연쇄붕괴 민감도 평가방법)

  • Noh, Sam-Young;Park, Ki-Hwan;Lee, Sang-Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.108-116
    • /
    • 2017
  • In this study, the prototype structure of seismically designed steel moment frame was analyzed statically and dynamically in order to demonstrate the applicability of energy-based approximate analysis with the dynamic effect of sudden column loss in the evaluation of the collapse resistance and a method for assessing the sensitivity to progressive collapse was proposed. For the purpose of comparing the structural behavior of buildings with different structural systems, the sensitivity of the structure to the sudden removal of vertical members can be used as a significant measure. The energy-based approximate analysis prediction for the prototype structure considered in the study showed good agreement with the dynamic analysis result. In the sensitivity evaluation, the structural robustness index that indicates the ability of a structure to resist collapse induced by abnormal loads was used. It was confirmed that the proposed methods can be used conveniently and rationally in progressive collapse analysis and design.

Sensitivity Analysis of Hydrodynamic Derivatives on Characteristics of Manoeuvring Motion of Manta-type Unmanned Undersea Test Vehicle (Manta형 무인잠수정의 조종운동 특성에 미치는 유체력미계수의 민감도 해석에 관한 연구)

  • Bae, Jun-Young;Sohn, Kyoung-Ho
    • Journal of Navigation and Port Research
    • /
    • v.32 no.8
    • /
    • pp.603-609
    • /
    • 2008
  • Manta-type Unmanned Undersea Test Vehicle(MUUTV) is based on the same design concept as Unmanned Undersea Vehicle called Manta Test Vehicle(MTV), which was originally built and operated by the Naval Undersea Warfare Center(Lisiewicz et al., 2000, Sirmalis et al. 2001). The authors carried out the sensitivity analysis of the response of manoeuvring motion of MUUTV to changes in hydrodynamic derivatives, In order to calculate the sensitivity indices of hydrodynamic derivatives on MUUTV, the method by Sen(2000) was adopted Basically the dynamic mathematical model with six degrees of freedom by Feldman(1979) is used but a little revised, refered to Sohn et al.(2006) and some experiment in circulating water channel. Through the present research, some hydrodynamic derivatives of significance are found out, and also the numerical simulation using simplified mathematical model based on result of sensitivity analysis is ascertained to be enough for prediction of manoeuvring characteristics of MUUTV.

Prediction of Chemotherapeutic Response in Unresectable Non-small-cell Lung Cancer (NSCLC) Patients by 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) Assay

  • Chen, Juan;Cheng, Guo-Hua;Chen, Li-Pai;Pang, Ting-Yuan;Wang, Xiao-Le
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3057-3062
    • /
    • 2013
  • Background: Selecting chemotherapy regimens guided by chemosensitivity tests can provide individualized therapies for cancer patients. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2Htetrazolium, inner salt (MTS) assay is one in vitro assay which has become widely used to evaluate the sensitivity to anticancer agents. The aim of this study was to evaluate the clinical applicability and accuracy of MTS assay for predicting chemotherapeutic response in unresectable NSCLC patients. Methods: Cancer cells were isolated from malignant pleural effusions of patients by density gradient centrifugation, and their sensitivity to eight chemotherapeutic agents was examined by MTS assay and compared with clinical response. Results: A total of 37 patients participated in this study, and MTS assay produced results successfully in 34 patients (91.9%). The sensitivity rates ranged from 8.8% to 88.2%. Twenty-four of 34 patients who received chemotherapy were evaluated for in vitro-in vivo response analysis. The correlation between in vitro chemosensitivity result and in vivo response was highly significant (P=0.003), and the total predictive accuracy, sensitivity, specificity, positive predictive value, and negative predictive value for MTS assay were 87.5%, 94.1%, 71.4%, 88.9%, and 83.3%, respectively. The in vitro sensitivity for CDDP also showed a significant correlation with in vivo response (P=0.018, r=0.522). Conclusion: MTS assay is a preferable in vitro chemosensitivity assay that could be use to predict the response to chemotherapy and select the appropriate chemotherapy regimens for unresectable NSCLC patients, which could greatly improve therapeutic efficacy and reduce unnecessary adverse effects.