• Title/Summary/Keyword: Sensing type

Search Result 1,087, Processing Time 0.022 seconds

Virtual Reality and Internet GIS for Highway Simulation Based on the ASE

  • Choi Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.5
    • /
    • pp.433-443
    • /
    • 2005
  • This paper show that, without installation of expensive VR (Virtual Reality) program, the sharing information is possible through posting three-dimensional road structures on the web, and avoiding the conventional top-down decision making method, fast bottom-up communication is possible base on the Virtual GIS (Geographic Information System). In this paper, using Viewpoint Scene Builder, internet-based software, the transformation was conducted to give pertinent type for web posting. In order to use the completed route at the scene builder, the output with ASCII Export is required, and ASE (ASCII Scene Export) contains the property information including the coordinate and frame of mesh vertex. Through in advance recognition of the problems regarding route design and petition due to environmental rights infringement, the time and cost due to design alteration can be reduced. It's difficult to provide VR based on the internet because file that embodied with internet GIS was complicated and its capacity comes to scores of mega-bites. But, this study provides VR with internet according to a basis by simplification of files.

Filtering Effect in Supervised Classification of Polarimetric Ground Based SAR Images

  • Kang, Moon-Kyung;Kim, Kwang-Eun;Cho, Seong-Jun;Lee, Hoon-Yol;Lee, Jae-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.705-719
    • /
    • 2010
  • We investigated the speckle filtering effect in supervised classification of the C-band polarimetric Ground Based SAR image data. Wishart classification method was used for the supervised classification of the polarimetric GB-SAR image data and total of 6 kinds of speckle filters were applied before supervised classification, which are boxcar, Gaussian, Lopez, IDAN, the refined Lee, and the refined Lee sigma filters. For each filters, we changed the filtering kernel size from $3{\times}3$ to $9{\times}9$ to investigate the filtering size effect also. The refined Lee filter with the kernel size of bigger than $5{\times}5$ showed the best result for the Wishart supervised classification of polarimetric GB-SAR image data. The result also showed that the type of trees could be discriminated by Wishart supervised classification of polarimetric GB-SAR image data.

New Unsupervised Classification Technique for Polarimetric SAR Images

  • Oh, Yi-Sok;Lee, Kyung-Yup;Jang, Ge-Ba
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.255-261
    • /
    • 2009
  • A new polarimetric SAR image classification technique based on the degree of polarization (DoP) and the co-polarized phase-difference (CPD) is presented in this paper. Since the DoP and the CPD of a scattered wave provide information on the randomness of the scattering and the type of scattering mechanisms, at first, the statistics of the DoP and CPD are examined with measured polarimetric SAR image data. Then, a DoP-CPD diagram with appropriate boundaries between six different classes is developed based on the SAR image. The classification technique is verified using the JPL AirSAR and ALOS PALSAR polarimetric data. The technique may have capability to classify an SAR image into six major classes; a bare surface, a village, a crown-layer short vegetation canopy, a trunk-layer short vegetation canopy, a crown-layer forest, and a trunk-dominated forest.

Classification of Land Cover on Korean Peninsula Using Multi-temporal NOAA AVHRR Imagery

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.381-392
    • /
    • 2003
  • Multi-temporal approaches using sequential data acquired over multiple years are essential for satisfactory discrimination between many land-cover classes whose signatures exhibit seasonal trends. At any particular time, the response of several classes may be indistinguishable. A harmonic model that can represent seasonal variability is characterized by four components: mean level, frequency, phase and amplitude. The trigonometric components of the harmonic function inherently contain temporal information about changes in land-cover characteristics. Using the estimates which are obtained from sequential images through spectral analysis, seasonal periodicity can be incorporates into multi-temporal classification. The Normalized Difference Vegetation Index (NDVI) was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula for 1996 ~ 2000 using a dynamic technique. Land-cover types were then classified both with the estimated harmonic components using an unsupervised classification approach based on a hierarchical clustering algorithm. The results of the classification using the harmonic components show that the new approach is potentially very effective for identifying land-cover types by the analysis of its multi-temporal behavior.

A Defective Detector Suppression in the Short Wave Infrared Band of SPOT/VEGETATION-1

  • Han, Kyung-Soo;Kim, Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.403-409
    • /
    • 2003
  • Since SPOT4 satellite contained VEGETATION 1 sensor launched, the noise in VEGETATION data was occasionally arisen a difficulty for the data traitement. Blind line noise types were studied in VEGETATION-l short wave infrared channel(SWIR). In order to provide a precis product, the procedure for removing this noise is strongly recommended. In the case that the blind values are clearly distinguished from contamination-free values a simple threshold method was applied, while a changeable threshold method was used for the blind value mixed with contamination-free values. New algorithm presented in this study is consists of two method for each type of SWIR blind. After removing blind line, there were again some residual pixels of blind, because the threshold is not determinated sufficiently low. Lower threshold could remove the blind line as well as the contamination-free pixels. Nevertheless, the results showed a good qualitative improvement as compared with other algorithm.

Monitoring of Forest Burnt Area using Multi-temporal Landsat TM and ETM+ Data

  • Lee, Seung-Ho;Kim, Cheol-Min;Cho, Hyun-Kook
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.1
    • /
    • pp.13-21
    • /
    • 2004
  • The usefulness of the multi-temporal satellite image to monitoring the vegetation recovery process after forest fire was tested. Using multi-temporal Landsat TM and ETM+data, NDVI and NBR changes over times were analyzed. Both NDVI and NBR values were rapidly decreased after the fire and gradually increased for all forest type and damage class. However, NBR curve showed much clearer tendency of vegetation recovery than NDVI. Both indices yielded the lowest values in severely damaged red pine forest. The results show the vegetation recovery process after forest fire can detect and monitor using multi-temporal Landsat image. NBR was proved to be useful to examine the recovering and development process of the vegetation after fire. In the not damaged forest, however the NDVI shows more potential capability to discriminate the forest types than NBR..

CCD Signal Processing for Optimal Non-Uniformity Correction

  • Kong, Jong-Pil;Lee, Song-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.645-652
    • /
    • 2010
  • The performance of the payload Electro-Optical System (EOS) in satellite system is affected by various factors, such as optics design, camera electronics design, and the characteristics of the CCD (Charge Coupled Device) used, etc. Of these factors, the camera electronics design is somewhat unique in that its operational parameters can be adjusted even after the satellite launch. In this paper, the effect of video gain on the non-uniformity correction performance is addressed. And a new optimal non-uniformity correction scheme is proposed and analyzed using the data from real camera electronics unit based on a TDI (Time Delayed Integration) type of CCD. The test results show that the performance of the conventional non-uniformity correction scheme is affected significantly when the video gain is added. On the other hand, in our proposed scheme, the performance is not dependent on the video gain. The insensitivity of the non-uniformity performance on the video-gain is mainly due to the fact that the correction is performed after the dark signal is subtracted from system response.

Study on Reillumination of Hi-soo type Electronic Manometer (희수식 전자 맥진기의 재조명)

  • Kim, Eun-Hye;Kim, Byung-Soo;Kang, Jung-Soo
    • Journal of Haehwa Medicine
    • /
    • v.18 no.2
    • /
    • pp.37-45
    • /
    • 2009
  • In early 1970s, Electronic Manometers were researched and developed for modernization and objectification of pulse diagnosis. Method of finger pressing, also known as cuffs pressing, is essential for sensing a pulse wave. I think comprehension and deduction of problem from the existing Hi-soo type electronic manometer, will be important for making a better one. The Hi-soo type electronic manometer is constructed of cuff pressing type sensor, differential amplifier, transmitter and recorder. Pulse movement and pulse wave, gauging blood flow, is analyzed by pulse image of "Yixuerumen(醫學入門)". At standard of pulse wave, huanmai(緩脈) is distinguish from chishu(slow and fast, 遲數), fushen(float and sink, 浮沈), interference wave, modificated wave, and phase angel. The Hi-soo type electronic manometer had no explanation of formational mechanism, significantly different with pulse wave which is early known and reported. The strength of Hi-soo type electric manometer is use of cuff pressing type sensor. Above all, the importance of electric manometer is reading the pulse movement accurately then expressing it as pulse wave. From now on the improvement of precise sensor should make a progress.

  • PDF

Current Developments of Biomedical Mobile Devices for Ubiquitous Healthcare (u-Healthcare를 위한 바이오 단말기의 개발 현황)

  • Lee, Tae-Soo;Hong, Joo-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.3
    • /
    • pp.185-190
    • /
    • 2009
  • Biomedical mobile devices for ubiquitous healthcare consist of biomedical sensors and communication terminal. They have two types of configuration. One is the sensor-network type device using wired or wireless communication with intelligent sensors to acquire biomedical data. The other is the sensor embedded type device, where the data can be acquired directly by itself. There are many examples of sensor network type, such as, fall detection sensor, blood glucose sensor, and ECG sensors networked with commercial PDA phone and commercial phone terminal for ubiquitous healthcare. On the other hand, sensor embedded type mounts blood glucose sensor, accelerometer, and etc. on commercial phone. However, to enable true ubiquitous healthcare, motion sensing is essential, because users go around anywhere and their signals should be measured and monitored, when they are affected by the motion. Therefore, in this paper, two biomedical mobile devices with motion monitoring function were addressed. One is sensor-network type with motion monitoring function, which uses Zigbee communication to measure the ECG, PPG and acceleration. The other is sensor-embedded type with motion monitoring function, which also can measure the data and uses the built-in cellular phone network modem for remote connection. These devices are expected to be useful for ubiquitous healthcare in coming aged society in Korea.

Application of a Textile-based Inductive Sensor for the Vital Sign Monitoring

  • Gi, Sun Ok;Lee, Young Jae;Koo, Hye Ran;Khang, Seonah;Kim, Kyung-Nam;Kang, Seung-Jin;Lee, Joo Hyeon;Lee, Jeong-Whan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.364-371
    • /
    • 2015
  • In this study, we developed a feasible structure of a textile-based inductive sensor using a machine embroidery method, and applied it to a non-contact type vital sign sensing device based on the principle of magnetic-induced conductivity. The mechanical heart activity signals acquired through the inductive sensor embroidered with conductive textile on fabric were compared with the Lead II ECG signals and with respiration signals, which were simultaneously measured in every case with five subjects. The analysis result showed that the locations of the R-peak in the ECG signal were highly associated with sharp peaks in the signals obtained through the textile-based inductive sensor (r=0.9681). Based on the results, we determined the feasibility of the developed textile-based inductive sensor as a measurement device for the heart rate and respiration characteristics.