• Title/Summary/Keyword: Sensing and Application

Search Result 1,526, Processing Time 0.029 seconds

USER BASED IMAGE SEGMENTATION FOR APPLICATION TO SATELLITE IMAGE

  • Im, Hyuk-Soon;Park, Sang-Sung;Shin, Young-Geun;Jang, Dong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.126-129
    • /
    • 2008
  • In this paper, we proposed a method extracting an object from background of the satellite image. The image segmentation techniques have been widely studied for the technology to segment image and to synthesis segment object with other images. Proposed algorithm is to perform the edge detection of a selected object using genetic algorithm. We segment region of object based on detection edge using watershed algorithm. We separated background and object in indefinite region using gradual region merge from segment object. And, we make GUI for the application of the proposed algorithm to various tests. To demonstrate the effectiveness of the proposed method, several analysis on the satellite images are performed.

  • PDF

INTEROPERABLE APPLICATION OF 3D GEO-BASED FEATURES ON MOBILE AND WEB

  • Dong, Woo-Cheol;Lee, Ki-Won
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.274-276
    • /
    • 2008
  • At the stage of content convergence into cell phone, technologies for geo-spatial information sharing and searching are being developed. Currently, 2D portable navigation map for mobile navigation is provided by communication companies, but geobrowers for 3D geo-information in cell phone are under developing. In this study, 3D feature transformation among X3D-M3G-KML, on mobile and web environments, is dealt with as the first stage for the further mobile 3D web application. As well, it is possible to real-time interoperable 3D geo-information exchange issues within both environments.

  • PDF

Template Synthesis of Nitrogen-Doped Short Tubular Carbons with Big Inner Diameter and their Application in Electrochemical Sensing

  • Cheng, Rui;Zou, Qiong;Zhang, Xiaohua;Xiao, Chunhui;Sun, Longfei;Chen, Jinhua
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2423-2430
    • /
    • 2014
  • Nitrogen-doped short tubular carbons (N-STCs) with big inner diameter have been successfully synthesized via carbonization of polydopamine (PDA) wrapped halloysite nanotubes (HNTs). The obtained N-STCs have average length of $0.3{\mu}m$ with big inner diameter (50 nm), thin wall (2-3 nm) and large surface area ($776m^2g^{-1}$), and show excellent electrochemical properties. As an example in electrochemical applications, N-STCs were used to electrochemically detect hydrogen peroxide ($H_2O_2$) and glucose. The results showed that the N-STCs modified glassy carbon (N-STCs/GC) electrode had much better analytical performance (lower detection limit and wider linear range) compared to the acid-treated carbon nanotubes (AO-CNTs) based GC electrode. The unique structure endows N-STCs the enhanced electrochemical performance and promising applications in electrochemical sensing.

PACRIM SCIENCE APPLICATIONS: A DECADE WITH AIRSAR

  • Milne, A.K.;Tapley, I.J.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.428-428
    • /
    • 2002
  • The scientific objectives of PACRIM (Pacific Rim) are to advance the understanding of polarimetric and interferometric radar and to promote its application in environmental research designed to detect and quantify changes found in both the physical and humanly dominated ecosystems on the earth's surface. The information derived is used to more readily identify environments at risk; improve environmental decision making and the management of resources and thereby lead to the implementation of more effective and sustainable land use practices. PACRIM is a collaborative research project was organized by NASA's Mission to Planet Earth, Airborne Sciences Program; the Jet Propulsion Laboratory; CSIRO-COSSA and the Centre for Remote Sensing and GIS at the University of New South Wales. A decade of working with AIRSAR data (1993-2003) in the Australia-Asian-Pacific region has provided the opportunity for more than 400 investigators from 20 countries to collect, analyse, interpret and apply state-of-the-art radar data to earth-science studies. This has been achieved by scientists working within seven broad research themes; o Forestry and vegetation o Geology and tectonic processes o Interferometry o Disaster management o Coastal analysis o Agriculture o Urban and regional development. This paper presents an overview of the three data acquisition missions (1993,1996 and 2000) and the science research outcomes achieved from analyzing high quality radar data.

  • PDF

Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing (광공진 현상을 이용한 입체 영상센서 및 신호처리 기법)

  • Park, Yong-Hwa;You, Jang-Woo;Park, Chang-Young;Yoon, Heesun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF

Review of Remote Sensing Applicability for Monitoring Marine Microplastics (해양 미세플라스틱 모니터링을 위한 원격탐사 적용 가능성 검토)

  • Park, Suhyeon;Kim, Changmin;Jeong, Seongwoo;Jang, Seonggan;Kim, Subeen;Ha, Taejung;Han, Kyung-soo;Yang, Minjune
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.835-850
    • /
    • 2022
  • Microplastics have arisen as a worldwide environmental concern, becoming ubiquitous in all marine compartments, and various researches on monitoring marine microplastics are being actively conducted worldwide. Recently, application of a remote detection technology that enables large-scale real-time observation to marine plastic monitoring has been conducted overseas. However, in South Korea, there is little information linking remote detection to marine microplastics and some field studies have demonstrated remote detection of medium- and large-sized marine plastics. This study introduces research cases with remote detection of marine plastics in South Korea and overseas, investigates potential feasibility of using the remote detection technology to marine microplastic monitoring, and suggests some future works to monitor marine microplastics with the remote detection.

Application of Time Domain Reflectometry to the Monitoring of Ground Defromation (지반변형측정을 위한 TDR기술의 적용)

  • Lee, Woo-Jin;Kim, Yong-Jin;Lee, Won-Je;Lee, Woong-Joo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.2
    • /
    • pp.15-25
    • /
    • 2003
  • Time Domain Refletometry, or TDR, is a remote sensing electrical measurement technique that has been used for many years to determine the spatial location and nature of various objects, especially in the United States of America and Australia at mining industry. Since early on 1990, the TDR techniques have been applied to the geotechnical engineering such as : deformation measurement of rock slope and landslide, monitoring of ground water content and ground water level change, investigation of ground contamination and its movement. The first application of this technique, in 1996, to the domestic area is to determine the possibility of ground settlement caused by subsidence from abandoned underground mines at the Tongri and Gosari in Gangwon-d. In this paper, through the results of analysed deformation data between conventional measurements and the TDR, it was concluded that the TDR technique is a useful instrumentation method for the prediction of ground deformation.

  • PDF

Study on EMI Elimination and PLN Application in ELF Band for Romote Sensing with Electric Potentiometer (전위계차 센서를 이용한 원격센싱을 위한 ELF 대역 EMI 제거 및 PLN 응용 연구)

  • Jang, Jin Soo;Kim, Young Chul
    • Smart Media Journal
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2015
  • In this paper, we propose the methods not only to eliminate ELF(Extremely Low Frequency) EMI(Electro-Magnetic Interference) noice for extending recognition distance, but also to utilize the the PLN for detecting starting instance of a hand gesture using electric potential sensor. First, we measure strength of electric field generated in the smart devices such as TV and phone, and minimize EMI through efficient arrangement of the sensors. Meanwhile, we utilize the 60 Hz PLN to extract the starting point of hand gesture. Thereafter, we eliminate the PLN generated in the smart device and circuit of sensors. And then, we shield the sensors from an electric noise generated from devices. Finally, through analyzing the frequency components according to the gesture of target, we use the low pass filter and the Kalman filter for elimination of remaining electric noise. We analyze and evaluate the proposed ELF-band EMI eliminating method for non-contact remote sensing of the EPS(Electric Potential Sensor). Combined with a detecting technique of gesture starting point, the recognition distance for gestures has been proven to be extended to more than 3m, which is critical for real application.

Design Mobility Agent Module for Healthcare Application Service (헬스케어 응용 서비스를 위한 Mobility Agent 모듈 설계)

  • Nam, Jin-Woo;Chung, Yeong-Jee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.378-384
    • /
    • 2008
  • The sensor network for the health care application service has the man or movable object as the main sensing object. In order to support inter-node interaction by the movement of such sensing objects, the node's dynamic function modification, dynamic self-configuration and energy efficiency must be considered. In this paper, the Agilla model which supports the dynamic function modification through the agent migration between nodes and LEACH protocol which guarantees the dynamic self-configuration and energy efficiency through the configuration of inter-node hierarchical cluster configuration are analyzed. Based on the results of the analysis, the Mobility Agent Middleware which supports the dynamic function modification between nodes is designed, and LEACH_Mobile protocol which guarantees the node nobility as the weakness of the existing LEACH protocol is suggested. Also, the routing module which supports the LEACH_Mobile protocol is designed and the interface for conjunction with Mobility Agent Middleware is designed. Then, it is definitely increase performance which un mobility node of transfer data rate through LEACH_Mobile protocol of simulation result.

Image Fusion and Evaluation by using Mapping Satellite-1 Data

  • Huang, He;Hu, Yafei;Feng, Yi;Zhang, Meng;Song, DongSeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.593-599
    • /
    • 2013
  • China's Mapping Satellite-1, developed by the China Aerospace Science and Technology Corporation (CASC), was launched in three years ago. The data from Mapping Satellite-1 are able to use for efficient surveying and geometric mapping application field. In this paper, we fuse the panchromatic and multispectral images of Changchun area, which are obtained from the Mapping Satellite-1, the one that is the Chinese first transmission-type three-dimensional mapping satellite. The four traditional image fusion methods, which are HPF, Mod.IHS, Panshar and wavelet transform, were used to approach for effectively fusing Mapping Satellite-1 remote sensing data. Subsequently we assess the results with some commonly used methods, which are known a subjective qualitative evaluation and quantitative statistical analysis approach. Consequently, we found that the wavelet transform remote sensing image fusion is the optimal in the degree of distortion, the ability of performance of details and image information availability among four methods. To further understand the optimal methods to fuse Mapping Satellite-1 images, an additional study is necessary.