Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.8.2423

Template Synthesis of Nitrogen-Doped Short Tubular Carbons with Big Inner Diameter and their Application in Electrochemical Sensing  

Cheng, Rui (State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University)
Zou, Qiong (State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University)
Zhang, Xiaohua (State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University)
Xiao, Chunhui (State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University)
Sun, Longfei (State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University)
Chen, Jinhua (State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University)
Publication Information
Abstract
Nitrogen-doped short tubular carbons (N-STCs) with big inner diameter have been successfully synthesized via carbonization of polydopamine (PDA) wrapped halloysite nanotubes (HNTs). The obtained N-STCs have average length of $0.3{\mu}m$ with big inner diameter (50 nm), thin wall (2-3 nm) and large surface area ($776m^2g^{-1}$), and show excellent electrochemical properties. As an example in electrochemical applications, N-STCs were used to electrochemically detect hydrogen peroxide ($H_2O_2$) and glucose. The results showed that the N-STCs modified glassy carbon (N-STCs/GC) electrode had much better analytical performance (lower detection limit and wider linear range) compared to the acid-treated carbon nanotubes (AO-CNTs) based GC electrode. The unique structure endows N-STCs the enhanced electrochemical performance and promising applications in electrochemical sensing.
Keywords
Nitrogen-doped short tubular carbons; Halloysite nanotubes; Electrochemistry; Template synthesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kyotani, T.; Tsai, L.-F.; Tomita, A. Chem. Mater. 1995, 7, 1427.   DOI
2 Xu, F.; Minniti, M.; Barone, P.; Sindona, A.; Bonanno, A.; Oliva, A. Carbon 2008, 46, 1489.   DOI   ScienceOn
3 Lai, L.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C.; Gong, H.; Shen, Z.; Lin, J.; Ruoff, R. S. Energy Environ. Sci. 2012, 5, 7936.   DOI   ScienceOn
4 Lei, Z.; Zhao, M.; Dang, L.; An, L.; Lu, M.; Lo, A.-Y.; Yu, N.; Liu, S.-B. J. Mater. Chem. 2009, 19, 5985.   DOI   ScienceOn
5 Zhang, H.; Cao, G.; Wang, Z.; Yang, Y.; Shi, Z.; Gu, Z.; Electrochem. Commun. 2008, 10, 1056.   DOI   ScienceOn
6 Nicholson, R. S. Anal. Chem. 1965, 37, 1351.   DOI
7 Jia, N.; Wang, L.; Liu, L.; Zhou, Q.; Jiang, Z. Electrochem. Commun. 2005, 7, 349.   DOI   ScienceOn
8 Veal, E. A.; Day, A. M.; Morgan, B. A. Molecular Cell 2007, 26, 1.   DOI   ScienceOn
9 Wang, J. Chem. Rev. 2008, 108, 814.   DOI   ScienceOn
10 Wu, S.; Ju, H.; Liu, Y. Adv. Funct. Mater. 2007, 17, 585.   DOI   ScienceOn
11 Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Science 2009, 323, 760.   DOI   ScienceOn
12 Wu, B.; Hu, D.; Kuang, Y.; Liu, B.; Zhang, X.; Chen, J. Angew. Chem. Int. Ed. 2009, 48, 4751.   DOI   ScienceOn
13 Hou, P.-X.; Yu, W.-J.; Shi, C.; Zhang, L.-L.; Liu, C.; Tian, X.-J.; Dong, Z.-L.; Cheng, H.-M. J. Mater. Chem. 2012, 22, 15221.   DOI   ScienceOn
14 Pierard, N.; Fonseca, A.; Konya, Z.; Willems, I.; Tendeloo, G. V.; Nagy, J. B. Chem. Phys. Lett. 2001, 335, 1.   DOI   ScienceOn
15 Pan, X.; Fan, Z.; Chen, W.; Ding, Y.; Luo, H.; Bao, X. Nature Materials 2007, 6, 507.   DOI   ScienceOn
16 Yang, Q.; Xu, W.; Tomita, A.; Kyotani, T. J. Am. Chem. Soc. 2005, 127, 8956.   DOI   ScienceOn
17 Jafri, R. I.; Rajalakshmi, N.; Ramaprabhu, S. J. Mater. Chem. 2010, 20, 7114.   DOI   ScienceOn
18 Xiao, K.; Liu, Y.; Ping'an H.; Yu, G.; Sun, Y.; Zhu, D. J. Am. Chem. Soc. 2005, 127, 8614.   DOI   ScienceOn
19 Jiang, H.; Zhao, T.; Li, C.; Ma, J. Chem. Commun. 2011, 47, 8590.   DOI   ScienceOn
20 Whitby, M.; Quirke, N. Nature Nanotechnology 2007, 2, 87.   DOI   ScienceOn
21 Xiao, C.; Chu, X.; Yang, Y.; Li, X.; Zhang, X.; Chen, J. Biosens. Bioelectron 2011, 26, 2934.   DOI   ScienceOn
22 Kim, B.; Murray, T.; Bau, H. Nanotechnology 2005, 16, 1317.   DOI   ScienceOn
23 Yah, W. O.; Takahara, A.; Lvov, Y. M. J. Am. Chem. Soc. 2012, 134, 1853.   DOI   ScienceOn
24 Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Science 2007, 318, 426.   DOI   ScienceOn
25 Zhang, L. L.; Zhao, X. Chem. Soc. Rev. 2009, 38, 2520.   DOI   ScienceOn
26 Frackowiak, E.; Beguin, F. Carbon 2001, 39, 937.   DOI   ScienceOn
27 Liang, C.; Li, Z.; Dai, S. Angew. Chem. Int. Ed. 2008, 47, 3696.   DOI   ScienceOn
28 Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Science 2002, 297, 787.   DOI   ScienceOn
29 Yang, W.; Ratinac, K. R.; Ringer, S. P.; Thordarson, P.; Gooding, J. J.; Braet, F. Angew. Chem. Int. Ed. 2010, 49, 2114.   DOI   ScienceOn
30 Sharifi, T.; Hu, G.; Jia, X.; Wagberg, T. ACS Nano 2012, 6, 8904.   DOI   ScienceOn
31 Chen, J.; Wang, M.; Liu, B.; Fan, Z.; Cui, K.; Kuang, Y. J. Phy. Chem. B 2006, 110, 11775.   DOI   ScienceOn
32 Chang, P. R.; Xie, Y.; Wu, D.; Ma, X. Carbohydr. Polym. 2011, 84, 1426.   DOI   ScienceOn