• Title/Summary/Keyword: Sensing and Application

Search Result 1,526, Processing Time 0.036 seconds

ASTRONAUT'S EARTH OBSERVATION ON THE INTERNATIONAL SPACE STSTION

  • Lee Joo-Hee;Kim Yeon-Kyu;Kim Jong-Woo;Choi Gi-Hyuk
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.624-627
    • /
    • 2005
  • Ministry of Science & Technology (MOST) and Korea Aerospace Research Institute (KARI) are preparing for the first Korean astronaut program based on the mid and long-term basic plan for space development of Korea from the year of 2003. KARI is making plans for the Korean astronaut's missions with Russia. To participate in the International Space Station (ISS) utilization through the Korean astronaut program, KARI investigates a lot of manned space missions. Among the suggested items, Earth observation on the Russian Module of ISS is the one expected mission for a Korean astronaut. This paper is intended to give readers a brief introduction of ISS Russian Module and research fields of Earth observation for astronaut's mission.

  • PDF

3D Navigation Real Time RSSI-based Indoor Tracking Application

  • Lee, Boon-Giin;Lee, Young-Sook;Chung, Wan-Young
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.67-77
    • /
    • 2008
  • Representation of various types of information in an interactive virtual reality environment on mobile devices had been an attractive and valuable research in this new era. Our main focus is presenting spatial indoor location sensing information in 3D perception in mind to replace the traditional 2D floor map using handheld PDA. Designation of 3D virtual reality by Virtual Reality Modeling Language (VRML) demonstrates its powerful ability in providing lots of useful positioning information for PDA user in real-time situation. Furthermore, by interpolating portal culling algorithm would reduce the 3D graphics rendering time on low power processing PDA significantly. By fully utilizing the CC2420 chipbased sensor nodes, wireless sensor network was established to locate user position based on Received Signal Strength Indication (RSSI) signals. Implementation of RSSI-based indoor tracking method is low-cost solution. However, due to signal diffraction, shadowing and multipath fading, high accuracy of sensing information is unable to obtain even though with sophisticated indoor estimation methods. Therefore, low complexity and flexible accuracy refinement algorithm was proposed to obtain high precision indoor sensing information. User indoor position is updated synchronously in virtual reality to real physical world. Moreover, assignment of magnetic compass could provide dynamic orientation information of user current viewpoint in real-time.

  • PDF

Analysis of Buck-Boost Converter for LED Drive (LED 구동을 위한 승강압 DC/DC 컨버터에 관한 연구)

  • Joe, Wi-Keun;Kim, Yong;Lee, Dong-Hyun;Cho, Kyu-Man;Lee, Eun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.967_968
    • /
    • 2009
  • For lighting application, high-power LED nowadays is driven at 350mA and a sensing resistor is used to provide feedback for LED-current regulation. This method adds an IR drop at the output branch, and limits power efficiency as LED current is large and keeps increasing. In this paper, a power efficient LED-current sensing circuit is proposed. The circuit does not use any sensing resistor but extracts LED-current information from the output capacitor of the driver. Controlling the brightness of LEDs requires a driver that provides a constant, regulated current. In one case, the converter may need to step down the input voltage, and, in another, it may need to boost up the output voltage. These situations often arise in applications with wide-ranging ""dirty"" input power sources, such as automotive systems. And, the driver topology must be able to generate a large enough output voltage to forward bias the LEDs. So, to provide this requirements, 13W prototype Buck-Boost Converter is used.

  • PDF

Segment-based Image Classification of Multisensor Images

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.611-622
    • /
    • 2012
  • This study proposed two multisensor fusion methods for segment-based image classification utilizing a region-growing segmentation. The proposed algorithms employ a Gaussian-PDF measure and an evidential measure respectively. In remote sensing application, segment-based approaches are used to extract more explicit information on spatial structure compared to pixel-based methods. Data from a single sensor may be insufficient to provide accurate description of a ground scene in image classification. Due to the redundant and complementary nature of multisensor data, a combination of information from multiple sensors can make reduce classification error rate. The Gaussian-PDF method defines a regional measure as the PDF average of pixels belonging to the region, and assigns a region into a class associated with the maximum of regional measure. The evidential fusion method uses two measures of plausibility and belief, which are derived from a mass function of the Beta distribution for the basic probability assignment of every hypothesis about region classes. The proposed methods were applied to the SPOT XS and ENVISAT data, which were acquired over Iksan area of of Korean peninsula. The experiment results showed that the segment-based method of evidential measure is greatly effective on improving the classification via multisensor fusion.

Middleware services for structural health monitoring using smart sensors

  • Nagayama, T.;Spencer, B.F. Jr.;Mechitov, K.A.;Agha, G.A.
    • Smart Structures and Systems
    • /
    • v.5 no.2
    • /
    • pp.119-137
    • /
    • 2009
  • Smart sensors densely distributed over structures can use their computational and wireless communication capabilities to provide rich information for structural health monitoring (SHM). Though smart sensor technology has seen substantial advances during recent years, implementation of smart sensors on full-scale structures has been limited. Hardware resources available on smart sensors restrict data acquisition capabilities; intrinsic to these wireless systems are packet loss, data synchronization errors, and relatively slow communication speeds. This paper addresses these issues under the hardware limitation by developing corresponding middleware services. The reliable communication service requires only a few acknowledgement packets to compensate for packet loss. The synchronized sensing service employs a resampling approach leaving the need for strict control of sensing timing. The data aggregation service makes use of application specific knowledge and distributed computing to suppress data transfer requirements. These middleware services are implemented on the Imote2 smart sensor platform, and their efficacy demonstrated experimentally.

Sensing Network Application Using Traffic Safety Signs (교통안전표지를 활용한 센싱 네트워크 응용)

  • Kim, Young-chul;Kim, Myeong-saeng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.597-598
    • /
    • 2018
  • Recently, the future traffic system is mainly aiming traffic safety by collecting, managing and providing traffic information using traffic system. But In this paper, we propose traffic safety using traffic safety mark which is currently utilized transportation infrastructure. The vehicle receives the sensed data with the traffic safety sign as a host, and carries out communication between the vehicles or the infrastructure. By using the information of sensing data, various information can be obtained. In addition to the construction section, traffic accidents can also be utilized. Therefore, this paper is designed to simplify the frame of sensing data and contribute to traffic safety through continuous research.

  • PDF

Selecting Optimal Basis Function with Energy Parameter in Image Classification Based on Wavelet Coefficients

  • Yoo, Hee-Young;Lee, Ki-Won;Jin, Hong-Sung;Kwon, Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.437-444
    • /
    • 2008
  • Land-use or land-cover classification of satellite images is one of the important tasks in remote sensing application and many researchers have tried to enhance classification accuracy. Previous studies have shown that the classification technique based on wavelet transform is more effective than traditional techniques based on original pixel values, especially in complicated imagery. Various basis functions such as Haar, daubechies, coiflets and symlets are mainly used in 20 image processing based on wavelet transform. Selecting adequate wavelet is very important because different results could be obtained according to the type of basis function in classification. However, it is not easy to choose the basis function which is effective to improve classification accuracy. In this study, we first computed the wavelet coefficients of satellite image using ten different basis functions, and then classified images. After evaluating classification results, we tried to ascertain which basis function is the most effective for image classification. We also tried to see if the optimum basis function is decided by energy parameter before classifying the image using all basis functions. The energy parameters of wavelet detail bands and overall accuracy are clearly correlated. The decision of optimum basis function using energy parameter in the wavelet based image classification is expected to be helpful for saving time and improving classification accuracy effectively.

Compressed-Sensing Cardiac CINE MRI using Neural Network with Transfer Learning (전이학습을 수행한 신경망을 사용한 압축센싱 심장 자기공명영상)

  • Park, Seong-Jae;Yoon, Jong-Hyun;Ahn, Chang-Beom
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1408-1414
    • /
    • 2019
  • Deep artificial neural network with transfer learning is applied to compressed sensing cardiovascular MRI. Transfer learning is a method that utilizes structure, filter kernels, and weights of the network used in prior learning for current learning or application. The transfer learning is useful in accelerating learning speed, and in generalization of the neural network when learning data is limited. From a cardiac MRI experiment, with 8 healthy volunteers, the neural network with transfer learning was able to reduce learning time by a factor of more than five compared to that with standalone learning. Using test data set, reconstructed images with transfer learning showed lower normalized mean square error and better image quality compared to those without transfer learning.

Standardizing Agriculture-related Land Cover Classification Scheme using IKONOS Satellite Imagery (IKONOS 영상자료를 이용한 농업지역 토지피복 분류기준 설정)

  • Hong Seong-Min;Jung In-Kyun;Kim Seong-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.253-259
    • /
    • 2004
  • The purpose of this study is to present a standardized scheme for providing agriculture-related information at various spatial resolutions of satellite images including Landsat + ETM, KOMPSAT-1 EOC, ASTER VNIR, and IKONOS panchromatic and multi-spectral images. The satellite images were interpreted especially for identifying agricultural areas, crop types, agricultural facilities and structures. The results were compared with the land cover/land use classification system suggested by National Geographic Information based on aerial photograph and Ministry of Environment based on satellite remote sensing data. As a result, high-resolution agricultural land cover map from IKONOS imageries was made out. The classification result by IKONOS image will be provided to KOMPSAT-2 project for agricultural application.

13M ANTENNA UPGRADE PLAN FOR FUTURE MISSION

  • Park, Durk-Jong;Yang, Hyung-Mo;Koo, In-Hoi;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.493-495
    • /
    • 2007
  • Future sub-meter resolution LEO missions require simultaneous dual-polarization downlink and/or multiple channel downlinks in single polarization. Especially, dual-polarization is needed to cope with bandwidth limitation due to high speed data transmission. Current KARI 13m X-Band antenna system needs to be upgraded to cope with such downlink schemes. This paper describes brief discussions on engineering work regarding how to meet the new requirements with minimum impact on current system as well as C&M (Control and Monitoring) software.

  • PDF