• Title/Summary/Keyword: Sensing and Application

Search Result 1,526, Processing Time 0.023 seconds

Spatial Frequency Coverage and Image Reconstruction for Photonic Integrated Interferometric Imaging System

  • Zhang, Wang;Ma, Hongliu;Huang, Kang
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.606-616
    • /
    • 2021
  • A photonic integrated interferometric imaging system possesses the characteristics of small-scale, low weight, low power consumption, and better image quality. It has potential application for replacing conventional large space telescopes. In this paper, the principle of photonic integrated interferometric imaging is investigated. A novel lenslet array arrangement and lenslet pairing approach are proposed, which are helpful in improving spatial frequency coverage. For the novel lenslet array arrangement, two short interference arms were evenly distributed between two adjacent long interference arms. Each lenslet in the array would be paired twice through the novel lenslet pairing approach. Moreover, the image reconstruction model for optical interferometric imaging based on compressed sensing was established. Image simulation results show that the peak signal to noise ratio (PSNR) of the reconstructed image based on compressive sensing is about 10 dB higher than that of the direct restored image. Meanwhile, the normalized mean square error (NMSE) of the direct restored image is approximately 0.38 higher than that of the reconstructed image. Structural similarity index measure (SSIM) of the reconstructed image based on compressed sensing is about 0.33 higher than that of the direct restored image. The increased spatial frequency coverage and image reconstruction approach jointly contribute to better image quality of the photonic integrated interferometric imaging system.

The Influence ${Sb_2}{O_3)$ Addition on Humidity Sensing Properties of $SnO_2$Thick Film Devices (${Sb_2}{O_3)$ 의 첨가가 $SnO_2$후막의 감습 특성에 미치는 영향)

  • 김종택;이덕출;김철수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.4
    • /
    • pp.294-299
    • /
    • 2000
  • For practical application as a humidity sensor SnO$_2$thick films devices were fabricated on the refresh type electrode by screen printing method and their material and humidity sensing properties were investigated. As a function of Sb$_{2}$/O$_{3}$ addition rate grain size was increased while porosity and initial resistance were rapidly decreased. And the area of resistance variation according to relative humidity was decreased with increasing heat treatment temperature. SnO$_2$thick film device heat treated at 95$0^{\circ}C$ and contained 0.05mole% Sb$_{2}$/O$_{3}$ had a best humidity sensing properties. From this result it is conformed that humidity sensing properties of SnO$_2$thick film devices could be approved by very small amount of Sb$_{2}$/O$_{3}$ addition.

  • PDF

Status of Remote Sensing and Data Policy in Japan (일본의 원격탐사 활용 실태 및 정책 동향)

  • Yoon, Bo-Yeol;Jang, Hee-Wook;Kim, Youn-Soo
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.45-54
    • /
    • 2011
  • Earth observation satellites data apply to various fields and global satellite imagery market continues to expand with increasing the scale according to the developed satellites. Sudden natural disasters frequently have occurred in Japan. ALOS satellite data support to repair the damaged area and mitigate the disasters in Japan as well as all around the world. In this paper, the status of remote sensing and data policy in Japan are described. In addition, satellite-based remote sensing technology effectively contribute to the public sector and related support to establish the infra system of satellite application promotion has been investigated.

  • PDF

Noncontact strain sensing in cement-based material using laser-induced fluorescence from nanotube-based skin

  • Meng, Wei;Bachilo, Sergei M.;Parol, Jafarali;Weisman, R. Bruce;Nagarajaiah, Satish
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.3
    • /
    • pp.259-270
    • /
    • 2022
  • This study explores the use of the recently developed "strain-sensing smart skin" (S4) method for noncontact strain measurements on cement-based samples. S4 sensors are single-wall carbon nanotubes dilutely embedded in thin polymer films. Strains transmitted to the nanotubes cause systematic shifts in their near-infrared fluorescence spectra, which are analyzed to deduce local strain values. It is found that with cement-based materials, this method is hampered by spectral interference from structured near-infrared cement luminescence. However, application of an opaque blocking layer between the specimen surface and the nanotube sensing film enables interference-free strain measurements. Tests were performed on cement, mortar, and concrete specimens with such modified S4 coatings. When specimens were subjected to uniaxial compressive stress, the spectral peak separations varied linearly and predictably with induced strain. These results demonstrate that S4 is a promising emerging technology for measuring strains down to ca. 30 𝜇𝜀 in concrete structures.

Reduction of biofouling using vanillin as a quorum sensing inhibitory agent in membrane bioreactors for wastewater treatment

  • Nam, AnNa;Kweon, JiHyang;Ryu, JunHee;Lade, Harshad;Lee, ChungHak
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.189-203
    • /
    • 2015
  • Membrane biofouling impedes wide application of membrane bioreactor (MBR) for wastewater treatment. Recently, quorum sensing (QS) mechanisms are accounted for one of major mechanisms in biofouling of MBRs. In this study, vanillin was applied to investigate reduction of biofouling in MBRs. MBR sludge was analyzed to contain QS signal molecules by cross-feeding biosensor assay and HPLC. In addition, the inhibitory activity of vanillin against bacterial quorum sensing was verified using an indicator strain CV026. The vanillin doses greater than 125 mg/L to 100 mL of MBR sludge showed 25% reduction of biofilm formed on the membrane surfaces. Two MBRs, i.e., a typical MBR as a control and an MBR with vanillin, were operated. The TMP increases of the control MBR were more rapid compared to those of the MBR with the vanillin dose of 250 mg/L. The treatment efficiencies of the two MBRs on organic removal and MLSS were maintained relatively constant. Extracellular polymeric substance concentrations measured at the end of the MBR operation were 173 mg/g biocake for the control MBR and 119 mg/g biocake for the MBR with vanillin. Vanillin shows great potential as an anti-biofouling agent for MBRs without any interference on microbial activity for wastewater treatment.

APPLICATION OF REMOTE SENSING IMAGERY ON THE ESTIMATE OF EVAPOTRANSPIRATION OVER PADDY FIELD

  • Chang, Tzu-Yin;Chien, Tzu-Chieh;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.752-755
    • /
    • 2006
  • Evaportranspiration is an important factor in hydrology cycle. Traditionally, it is measured by using basin or empirical formula with meteorology data, while it does not represent the evaportranspiration over a regional area. With the advent of improved remote sensing technology, it becomes a surface parameter of research interest in the field of remote sensing. Airborne and satellite imagery are utilized in this study. The high resolution airborne images include visible, near infrared, and thermal infrared bands and the satellite images are acquired by MODIS. Surface heat fluxes such as latent heat flux and sensible heat flux are estimate by using airborne and satellite images with surface meteorological measurements. We develop a new method to estimate the evaportranspiration over the rice paddy. The surface heat fluxes are initialized with a surface energy balance concept and iterated for convergent solution with atmospheric correct functions associated with aerodynamic resistance of heat transport. Furthermore, we redistribute the total net energy into sensible heat and latent heat fluxes. The result reveals that radiation and evaporation controlled extremes can be properly decided with both airborne and satellite images. The correlation coefficient of latent heat flux and sensible heat flux with corresponding in situ observations are 0.66 and 0.76, respectively. The relative root mean squared errors (RMSEs) for latent heat flux and sensible heat flux are 97.81 $(W/m^2)$ and 124.33 $(W/m^2)$, respectively. It is also shown that the newly developed retrieval scheme performs well when it is tested by using MODIS date.

  • PDF

Technology Tree and Domestic Research Status of Satellite Remote-Sensing of the Earth (위성자료를 응용한 지구관측 분야의 기술분류와 국내 연구동향 파악)

  • 김승범;김문규;안명환;김계현;사공호상
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.253-273
    • /
    • 2001
  • In this review article, we produce a technology tree in the earth observation by remote sensing, which is the Level I technology in the tree. To define Level II technologies, we create a two-dimensional matrix of technologies viewed from methodology and application viewpoints. Consequently the following fields are selected: reception-archiving, atmosphere, ocean, land, GIS, and common technology. For each Level II technology, we extract half a dozen Level III and about 20-30 Level IV technologies. For each Level IV technology, we review the status of domestic research and the approaches for acquiring deficient technology in Korea. Also we survey foreign institutions specializing in the deficient technologies and the time when the deficient technologies are needed. Furthermore we assign priority technologies from the viewpoints of public need and economic benefits. The information given in this article would help understand and collaborate among different disciplines, be a useful guide to a beginner to remote sensing, and assist policy making.

Optimizing Image Size of Convolutional Neural Networks for Producing Remote Sensing-based Thematic Map

  • Jo, Hyun-Woo;Kim, Ji-Won;Lim, Chul-Hee;Song, Chol-Ho;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.661-670
    • /
    • 2018
  • This study aims to develop a methodology of convolutional neural networks (CNNs) to produce thematic maps from remote sensing data. Optimizing the image size for CNNs was studied, since the size of the image affects to accuracy, working as hyper-parameter. The selected study area is Mt. Ung, located in Dangjin-si, Chungcheongnam-do, South Korea, consisting of both coniferous forest and deciduous forest. Spatial structure analysis and the classification of forest type using CNNs was carried in the study area at a diverse range of scales. As a result of the spatial structure analysis, it was found that the local variance (LV) was high, in the range of 7.65 m to 18.87 m, meaning that the size of objects in the image is likely to be with in this range. As a result of the classification, the image measuring 15.81 m, belonging to the range with highest LV values, had the highest classification accuracy of 85.09%. Also, there was a positive correlation between LV and the accuracy in the range under 15.81 m, which was judged to be the optimal image size. Therefore, the trial and error selection of the optimum image size could be minimized by choosing the result of the spatial structure analysis as the starting point. This study estimated the optimal image size for CNNs using spatial structure analysis and found that this can be used to promote the application of deep-learning in remote sensing.

Coastal Remote Sensing in Korea (한국의 연안원격탐사 활용)

  • Ryu, Joo-Hyung;Hong, Sang-Hoon;Jo, Young-Heon;Kim, Duk-jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.231-236
    • /
    • 2020
  • Recently, great attention for environment changes of coastal regions due to climate change by the global warming has been raised. In addition, coastal environments which are very useful resources has been impacted by anthropogenic activities such as urbanization or fishery, etc. In situ measurements and remote sensing application using various platforms equipped by payloads with very diverse spectral resolution has been conducted to protect and reconstruct invaluable coastal region. In this special issue, several studies showing very interesting results of the coastal remote sensing in Korea. This special issue contains the research activities over the coastal regions in Korea has been performed by the KIOST Korea Ocean Satellite Center and academic organizations. We hope to share useful information on the various domestic coastal remote exploration activities and to contribute to develop scientific research to protect our invaluable coastal environment.

A Review on Remote Sensing Techniques and Case Studies for Active Fault Investigation (활성단층 조사에 활용되는 원격탐사 기술과 사례의 고찰)

  • Gwon, Ohsang;Son, Hyorok;Bae, Sangyeol;Park, Kiwoong;Choi, Ho-Seok;Kim, Young-Seog;Lee, Seoung-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1901-1922
    • /
    • 2021
  • Since most large earthquakes occur by reactivation of preexisting active faults, it is important to understand the locations and characteristics of active faults in terms of earthquake hazard research and earthquake disaster prevention. Recently, several remote sensing techniques are broadly used for lineament analysis performed prior to field surveys in active fault surveys. The aim of this paper is introducing simple principles and application examples of each remote sensing technique (satellite remote sensing, airborne remote sensing, InSAR, LiDAR) widely used for active fault investigation. This paper also explains the analytical methods for the slope break generated by fault activity based on GIS and the horizontal displacement of the strike-slip fault. In discussion, we would like to discuss the problems and solutions on making DEM based on aerial photography, and a new developed technique (RRIM) to overcome the problems of DEM based on aerial LiDAR. Understanding remote sensing techniques used for active fault investigation and utilizing appropriate methods depending on the situation and limitations of each remote sensing technique are important for effective active fault investigation.