• Title/Summary/Keyword: Sensing Region

Search Result 632, Processing Time 0.031 seconds

Lightning activity in summer monsoon precipitation over Korean peninsula

  • Kar, S.K.;Ha, Kyung-Ja
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.366-366
    • /
    • 2002
  • Cloud-to ground lightning and total precipitation over Korean peninsula during the summer monsoon season are studied extensively with a special emphasis on the characteristics of convective precipitation. Ten years (1988-1997) lightning and rainfall data and a temporal and spatial scale of one month and 10$^2$ km$^2$ respectively are used to calculate the monthly number of CG lightning flash count. Monsoonal convective activity is higher over the west coast with maxima at two different regions, one in the northern part which increases nortwestward and the other is at the middle west coast of Korea increasing towards the west coast. East coast represents the minimum value of monsoonal convective activity. In the east coast of Korean peninsula, particularly in the region east of Tae-back mountain, the value of Rain yield, (which is defined as the ratio of total precipitation to CG flash count over a common area), is maximum with an average value of 3$\times$10$^{8}$ kg fl$^{-1}$, while the minimum value of rain yield is occurred in the west of Tae-back mountain, with an average value of 0.8$\times$10$^{8}$ kg fl$^{-1}$. Results show in the west coast stations, nearly 82% of the total rainfall is convective in nature, at the middle of the peninsula 53% of the total rain is convective while in the east coast stations 46% contribution from the convective rain is seen. Kanghwa receives the maximum convective rain while at Ulsan the convective rain is minimum. Correlation coefficient between the total precipitation and CG lightning during the summer monsoon season is 0.54.

  • PDF

Modelling land degradation in the mountainous areas

  • Shrestha, D.P.;Zinck, J.A.;Ranst, E. Van
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.817-819
    • /
    • 2003
  • Land degradation is a crucial issue in mountainous areas and is manifested in a variety of processes. For its assessment, application of existing models is not straightforward. In addition, data availability might be a problem. In this paper, a procedure for land degradation assessment is described, which follows a four-step approach: (1) detection, inventory and mapping of land degradation features, (2) assessing the magnitude of soil loss, (3) study of causal factors, and (4) hazard assessment by applying decision trees. This approach is applied to a case study in the Middle Mountain region of Nepal. The study shows that individual mass movement features such as debris slides and slumps can be easily mapped by photo interpretation techniques. Application of soil loss estimation models helps get insight on the magnitude of soil losses. In the study area soil losses are higher in rainfed crops on sloping terraces (highest soil loss is 32 tons/ha/yr) and minimal under dense forest and in irrigated rice fields (less than 1 ton/ha/yr). However there is high frequency of slope failures in the form of slumps in the rice fields. Debris slides are more common on south-facing slopes under rainfed agriculture or in degraded forest. Field evidences and analysis of causal factors for land degradation helps in building decision trees, the use of which for modelling land degradation has the advantage that attributes can be ranked and tested according to their importance. In addition, decision trees are simple to construct, easy to implement and very flexible in adaptations.

  • PDF

Influences of Physical Soil Properties on Drought Severity in the Central Great Plains Based on Satellite Data and a Digital Soil Database (인공위성자료와 디지털 토양자료를 통해 분석한 미중부 대평원 지역 가뭄정도에 미친 물리적 토양특성의 영향)

  • Sunyurp Park
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.6
    • /
    • pp.935-948
    • /
    • 2003
  • The State Soil Geographic (STATSGO) database is a valuable source for assessment of soil properties at a state level. Using GIS techniques, eight physical soil properties were extracted from the database, including available water capacity, clay content, soil depth, slope, depth to water table, drainage, texture, and permeability. The influences of these soil properties on drought severity, which was estimated by NDVI departures from normal, were determined over western-central Kansas. Study results showed that seven soil properties had significant relationships with drought severity with correlation coefficients, ranging from -0.89 to 0.85. Thermal emission signals from the Moderate Resolution Imaging Spectroradiometer (MODIS) had a significant relationship with drought severity expressed by NDVI departure from normal and represented spatial progression of drought over time well. High thermal signals, indicating high soil moisture deficit, emerged in the western region and their spatial distribution changed over time. Different sets of soil factors influenced drought severity among early-drying and late-drying areas.

Synthesis of functional ZnO nanoparticles and their photocatalytic properties

  • Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Sang-Duck;Kim, Min-Hee;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.54-54
    • /
    • 2010
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation(REDOX) reaction will occur on the ZnO surface and generate ${O_2}^-$ and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into $CO_2$ and $H_2O$. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with $TiO_2$. $Zn(OH)_2$ was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF

Haptic recognition of the palm using ultrasound radiation force and its application (초음파 방사힘을 이용한 손바닥의 촉각 인식과 응용)

  • Kim, Sun Ae;Kim, Tae Yang;Lee, Yeol Eum;Lee, Soo Yeon;Jeong, Mok Kun;Kwon, Sung Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.467-475
    • /
    • 2019
  • A high-intensity ultrasound wave generates acoustic streaming and acoustic radiation forces when propagating through a medium. An acoustic radiation force generated in a three-dimensional space can produce a solid tactile sensation, delivering spatial information directly to the human skin. We placed 154 ultrasound transmit elements with a frequency of 40 kHz on a concave circular dish, and generated an acoustic radiation force at the focal point by transmitting the ultrasound wave. To feel the tactile sensation better, the transmit elements were excited by sine waves whose amplitude was modulated by a 60 Hz square wave. As an application of ultrasonic tactile sensing, a region where tactile sense is formed in the air is used as an indicator for the position of the hand. We confirmed the utility of ultrasonic tactile feedback by implementing a system that provides the number of fingers to a machine by receiving the shape of the hand at the focal point where the tactile sense is detected.

Real-time Vital Signs Measurement System using Facial Image Data (안면 이미지 데이터를 이용한 실시간 생체징후 측정시스템)

  • Kim, DaeYeol;Kim, JinSoo;Lee, KwangKee
    • Journal of Broadcast Engineering
    • /
    • v.26 no.2
    • /
    • pp.132-142
    • /
    • 2021
  • The purpose of this study is to present an effective methodology that can measure heart rate, heart rate variability, oxygen saturation, respiration rate, mental stress level, and blood pressure using mobile front camera that can be accessed most in real life. Face recognition was performed in real-time using Blaze Face to acquire facial image data, and the forehead was designated as ROI (Region Of Interest) using feature points of the eyes, nose, and mouth, and ears. Representative values for each channel of the ROI were generated and aligned on the time axis to measure vital signs. The vital signs measurement method was based on Fourier transform, and noise was removed and filtered according to the desired vital signs to increase the accuracy of the measurement. To verify the results, vital signs measured using facial image data were compared with pulse oximeter contact sensor, and TI non-contact sensor. As a result of this work, the possibility of extracting a total of six vital signs (heart rate, heart rate variability, oxygen saturation, respiratory rate, stress, and blood pressure) was confirmed through facial images.

A Residual Ionospheric Error Model for Single Frequency GNSS Users in the Korean Region (한국지역에서의 단일주파수 GNSS 사용자를 위한 전리층 잔류 오차 모델 개발)

  • Yoon, Moonseok;Ahn, Jongsun;Joo, Jung -Min
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.194-202
    • /
    • 2021
  • Ionosphere, one of the largest error sources, can pose potentially harmful threat to single-frequency GNSS (global navigation satellite system) user even after applying ionospheric corrections to their GNSS measurements. To quantitatively assess ionospheric impacts on the satellite navigation-based applications using simulation, the standard deviation of residual ionospheric errors is needed. Thus, in this paper, we determine conservative statistical quantity that covers typical residual ionospheric errors for nominal days. Extensive data-processing computes TEC (total electron content) estimates from GNSS measurements collected from the Korean reference station networks. We use Klobuchar model as a correction to calculate residual ionospheric errors from TEC (total electron content) estimate. Finally, an exponential delay model for residual ionospheric errors is presented as a function of local time and satellite elevation angle.

Impacts of Urban Land Cover Change on Land Surface Temperature Distribution in Ho Chi Minh City, Vietnam

  • Le, Thi Thu Ha;Nguyen, Van Trung;Pham, Thi Lan;Tong, Thi Huyen Ai;La, Phu Hien
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.113-122
    • /
    • 2021
  • Urban expansion, particularly converting sub-urban areas to residential and commercial land use in metropolitan areas, has been considered as a significant signal of regional economic development. However, this results in urban climate change. One of the key impacts of rapid urbanization on the environment is the effect of UHI (Urban Heat Island). Understanding the effects of urban land cover change on UHI is crucial for improving the ecology and sustainability of cities. This research reports an application of remote sensing data, GIS (Geographic Information Systems) for assessing effects of urban land cover change on the LST (Land Surface Temperature) and heat budget components in Ho Chi Minh City, where is one of the fastest urbanizing region of Vietnam. The change of urban land cover component and LST in the city was derived by using multi-temporal Landsat data for the period of 1998 - 2020. The analysis showed that, from 1998 to 2020 the city had been drastically urbanized into multiple directions, with the urban areas increasing from approximately 125.281 km2 in 1998 to 162.6 km2 in 2007, and 267.2 km2 in 2020, respectively. The results of retrieved LST revealed the radiant temperature for 1998 ranging from 20.2℃ to 31.2℃, while that for 2020 remarkably higher ranging from 22.1℃ to 42.3℃. The results also revealed that given the same percentage of urban land cover components, vegetation area is more effective to reduce the value of LST, meanwhile the impervious surface is the most effective factor to increase the value of the LST.

A hierarchical semantic segmentation framework for computer vision-based bridge damage detection

  • Jingxiao Liu;Yujie Wei ;Bingqing Chen;Hae Young Noh
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.325-334
    • /
    • 2023
  • Computer vision-based damage detection enables non-contact, efficient and low-cost bridge health monitoring, which reduces the need for labor-intensive manual inspection or that for a large number of on-site sensing instruments. By leveraging recent semantic segmentation approaches, we can detect regions of critical structural components and identify damages at pixel level on images. However, existing methods perform poorly when detecting small and thin damages (e.g., cracks); the problem is exacerbated by imbalanced samples. To this end, we incorporate domain knowledge to introduce a hierarchical semantic segmentation framework that imposes a hierarchical semantic relationship between component categories and damage types. For instance, certain types of concrete cracks are only present on bridge columns, and therefore the noncolumn region may be masked out when detecting such damages. In this way, the damage detection model focuses on extracting features from relevant structural components and avoid those from irrelevant regions. We also utilize multi-scale augmentation to preserve contextual information of each image, without losing the ability to handle small and/or thin damages. In addition, our framework employs an importance sampling, where images with rare components are sampled more often, to address sample imbalance. We evaluated our framework on a public synthetic dataset that consists of 2,000 railway bridges. Our framework achieves a 0.836 mean intersection over union (IoU) for structural component segmentation and a 0.483 mean IoU for damage segmentation. Our results have in total 5% and 18% improvements for the structural component segmentation and damage segmentation tasks, respectively, compared to the best-performing baseline model.

Spatiotemporal patterns of the extreme 2022 drought event in Southern region using remote sensing based drought index (위성영상 기반 가뭄지수를 활용한 2022년 남부지역의 가뭄 분석)

  • Gwang-Su Park;Won-Ho Nam;Hee-Jin Lee;Young-Sik Mun;Min-Gi Jeon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.202-202
    • /
    • 2023
  • 전 세계적으로 지구 온난화로 인해 발생한 가뭄은 사회적, 경제적, 환경적으로 막대한 피해를 야기하고 있다. 국내의 경우, 2022년부터 현재까지 지속되고 있는 가뭄 상황은 강수의 지역적 편차로 인해 남부 지역 중심으로 극심한 피해가 발생하였다. 남부 지역의 주요 용수공급원인 영산강, 섬진강권역의 용수 공급율은 예년의 57%(3.8억 톤)에 불과하며, 일부 도서·산간 지역은 용수공급이 제한되는 현상까지 발생하였다. 이러한 가뭄 피해를 대비하기 위해 초기에 모니터링을 통한 선제적 대응 방안을 구축해야 한다. 가뭄 모니터링의 경우 미계측 지역에 대한 모니터링 방법으로 주기적이고 균질한 자료를 제공 받을 수 있는 위성영상을 활용한 연구가 수행되고 있다. 가뭄을 정량적으로 분석하고 판단하기 위해 가뭄지수를 활용하고 있으며, 대표적인 가뭄지수는 지상 관측강수량자료를 활용한 확률분포 기반의 표준강수지수 (Standardized Precipitation Index, SPI)와 강수 및 기온의 변동성이 포함된 표준강수증발산지수 (Standardized Precipitation Evapotranspiration Index, SPEI)가 있으며, 위성영상 자료를 활용한 가뭄지수인 증발스트레스지수(Evaporative Stress Index, ESI) 등이 있다. 본 연구에서는 강수와 기온을 고려한 가뭄지수인SPEI와 위성영상 기반의 가뭄지수인 ESI를 활용하여 2022년 남부 지역의 가뭄 사상을 중심으로 지표별 시공간적 변화를 분석하고자 한다. SPEI의 경우 기상관측소 지점자료의 기온과 강수량을 활용하였으며, Terra 위성의 MODIS (Moderate Resolution Imaging Spectroradiometer) 센서에서 제공되는 위성영상자료를 활용한 ESI는 미계측 지역에 대한 가뭄 판단을 위해 시·군별로 세분화하여 산정하였다.

  • PDF