• Title/Summary/Keyword: Sensing Property

Search Result 287, Processing Time 0.027 seconds

Gas Sensing Property of SnO2 Nanoparticles Synthesized by Flame Spray Pyrolysis (화염 분무 열분해법에 의해 합성된 SnO2 나노입자의 가스 감응 특성)

  • Kim, Hong-Chan;Shin, Dong-Wook;Hong, Seong-Hyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.626-631
    • /
    • 2012
  • $SnO_2$ nanoparticles were synthesized by flame spray pyrolysis, which were directly deposited on Pt interdigitated substrates. Gas sensing performance was evaluated for various gases such as $H_2$, CO, $H_2S$, and $NH_3$, and it was compared with that of commercial $SnO_2$ nanopowder. The synthesis of $SnO_2$ nanoparticles was also conducted in various solvents. As a result, the primary particle size was changed with the solvent of precursor solution, and their $H_2$ sensing properties were significantly affected.

Measurement Coding for Compressive Sensing of Color Images

  • Dinh, Khanh Quoc;Trinh, Chien Van;Nguyen, Viet Anh;Park, Younghyeon;Jeon, Byeungwoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • From the perspective of reducing the sampling cost of color images at high resolution, block-based compressive sensing (CS) has attracted considerable attention as a promising alternative to conventional Nyquist/Shannon sampling. On the other hand, for storing/transmitting applications, CS requires a very efficient way of representing the measurement data in terms of data volume. This paper addresses this problem by developing a measurement-coding method with the proposed customized Huffman coding. In addition, by noting the difference in visual importance between the luma and chroma channels, this paper proposes measurement coding in YCbCr space rather than in conventional RGB color space for better rate allocation. Furthermore, as the proper use of the image property in pursuing smoothness improves the CS recovery, this paper proposes the integration of a low pass filter to the CS recovery of color images, which is the block-based ${\ell}_{20}$-norm minimization. The proposed coding scheme shows considerable gain compared to conventional measurement coding.

Assessment of Agricultural Environment Using Remote Sensing and GIS

  • Hong Suk Young
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2005.08a
    • /
    • pp.75-87
    • /
    • 2005
  • Remote sensing(RS)- and geographic information system(GIS)-based information management to measure and assess agri-environment schemes, and to quantify and map environment indicators for nature and land use, climate change, air, water and energy balance, waste and material flow is in high demand because it is very helpful in assisting decision making activities of farmers, government, researchers, and consumers. The versatility and ability of RS and GIS containing huge soil database to assess agricultural environment spatially and temporally at various spatial scales were investigated. Spectral and microwave observations were carried out to characterize crop variables and soil properties. Multiple sources RS data from ground sensors, airborne sensors, and also satellite sensors were collected and analyzed to extract features and land cover/use for soils, crops, and vegetation for support precision agriculture, soil/land suitability, soil property estimation, crop growth estimation, runoff potential estimation, irrigated and the estimation of flooded areas in paddy rice fields. RS and GIS play essential roles in a management and monitoring information system. Biosphere-atmosphere interection should also be further studied to improve synergistic modeling for environment and sustainability in agri-environment schemes.

  • PDF

H2 gas sensing characteristics of SnO2 nano-powdersprepared by homogeneous precipitation method (균일침전법을 이용한 SnO2 나노분말의 H2 감지 특성)

  • Kim, Yeong-Bok;Lee, Woon-Young;Park, Jin-Seong
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.361-368
    • /
    • 2008
  • Nanosized $SnO_2$ particles were synthesized by homogeneous precipitation method using tin chloride ($SnCl_4{\cdot}5H_{2}O$) and urea ($CO(NH_2)_2$). The powders were heated at $500^{\circ}C$ and $600^{\circ}C$ for 2h. The crystal structure, microstructure, thermal behavior, specific surface area were analyzed using XRD, FE-SEM, TGA and BET, respectively. The initial resistance and the $H_2$ sensing properties were measured as a function of ${Sb_2}{O_3}$ and Pd doping concentrations. The resistance was decreased with the addition of ${Sb_2}{O_3}$ and the sensitivity for $H_2$ gas was increased with the addition of Pd. Thus, the optimum $H_2$ gas sensing property was obtained in the 0.25.mol% ${Sb_2}{O_3}$ and 1.w% added $SnO_2$ powders.

ERS-1 AND CCRS C-SAR Data Integration For Look Direction Bias Correction Using Wavelet Transform

  • Won, J.S.;Moon, Woo-Il M.;Singhroy, Vern;Lowman, Paul-D.Jr.
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.49-62
    • /
    • 1994
  • Look direction bias in a single look SAR image can often be misinterpreted in the geological application of radar data. This paper investigates digital processing techniques for SAR image data integration and compensation of the SAR data look direction bias. The two important approaches for reducing look direction bias and integration of multiple SAR data sets are (1) principal component analysis (PCA), and (2) wavelet transform(WT) integration techniques. These two methods were investigated and tested with the ERS-1 (VV-polarization) and CCRS*s airborne (HH-polarization) C-SAR image data sets recorded over the Sudbury test site, Canada. The PCA technique has been very effective for integration of more than two layers of digital image data. When there only two sets of SAR data are available, the PCA thchnique requires at least one more set of auxiliary data for proper rendition of the fine surface features. The WT processing approach of SAR data integration utilizes the property which decomposes images into approximated image ( low frequencies) characterizing the spatially large and relatively distinct structures, and detailed image (high frequencies) in which the information on detailed fine structures are preserved. The test results with the ERS-1and CCRS*s C-SAR data indicate that the new WT approach is more efficient and robust in enhancibng the fine details of the multiple SAR images than the PCA approach.

Polarity Index Dependence of M13 Bacteriophage-based Nanostructure for Structural Color-based Sensing

  • Lee, Yujin;Moon, Jong-Sik;Kim, Kyujung;Oh, Jin-Woo
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.12-16
    • /
    • 2017
  • Color sensor systems based on M13 bacteriophage are being considerably researched. Although many studies on M13 bacteriophage-based chemical sensing of TNT, endocrine disrupting chemicals, and antibiotics have been undertaken, the fundamental physical and chemical properties of M13 bacteriophage-based nanostructures require further research. A simple M13 bacteriophage-based colorimetric sensor was fabricated by a simple pulling technique, and M13 bacteriophage was genetically engineered using a phage display technique to exhibit a negatively charged surface. Arrays of structurally and genetically modified M13 bacteriophage that can determine the polarity indexes of various alcohols were found. In this research, an M13 bacteriophage-based color sensor was used to detect various types of alcohols, including methanol, ethanol, and methanol/butanol mixtures, in order to investigate the polarity-related property of the sensor. Studies of the fundamental chemical sensing properties of M13 bacteriophage-based nanostructures should result in wider applications of M13 bacteriophage-based colorimetric sensors.

Dual-function Dynamically Tunable Metamaterial Absorber and Its Sensing Application in the Terahertz Region

  • Li, You;Wang, Xuan;Zhang, Ying
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.252-259
    • /
    • 2022
  • In this paper, a dual-function dynamically tunable metamaterial absorber is proposed. At frequency points of 1.545 THz and 3.21 THz, two resonance peaks with absorption amplitude of 93.8% (peak I) and 99.4% (peak II) can be achieved. By regulating the conductivity of photosensitive silicon with a pump laser, the resonance frequency of peak I switches to 1.525 THz, and that of peak II switches to 2.79 THz. By adjusting the incident polarization angle by rotating the device, absorption amplitude tuning is obtained. By introducing two degrees of regulation freedom, the absorption amplitude modulation and resonant frequency switching are simultaneously realized. More importantly, dynamic and continuous adjustment of the absorption amplitude is obtained at a fixed resonant frequency, and the modulation depth reaches 100% for both peaks. In addition, the sensing property of the proposed MMA was studied while it was used as a refractive index sensor. Compared with other results reported, our device not only has a dual-function tunable characteristic and the highest modulation depth, but also simultaneously possesses fine sensing performance.

Umami Taste-Yielding Food Materials on Calcium-Sensing Receptor, a Kokumi Taste Receptor (감칠맛 식품 소재가 Kokumi 맛 감지 칼슘수용체에 미치는 효과)

  • Yiseul, Kim;Eun-Young, Kim;Mee-Ra, Rhyu
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.6
    • /
    • pp.531-536
    • /
    • 2022
  • Umami taste-yielding foods, such as, Joseonganjang, dried anchovies, dried shiitake, dried Konbu (kelp), and Yukjeot, are widely used in the Korean cuisine as soup base. While Umami taste enhancement related to Kokumi taste substances has been proposed in human sensory studies, the potential action of Kokumi taste substances has not been explored on calcium-sensing receptors (CaSR), here referred to as Kokumi taste receptors. In this study, we investigated the effect of Umami taste-yielding foods on Kokumi taste receptors using cells expressing human CaSR. We monitored the temporal changes in intracellular Ca2+ in HEK293T cells expressing CaSR in response to aqueous extract of Joseonganjang, dried anchovies, dried shiitake, dried Konbu, and Yukjeot. Kokumi substances tested-glutathione and γ-Glu-Val-Gly- evoked intracellular Ca2+ influx in a concentration-dependent manner. A similar increment of intracellular Ca2+ influx was induced by Joseonganjang, Yukjeot, and dried anchovies, but not by dried shiitake and dried Konbu. Only Joseonganjang- and Yukjeot-evoked intracellular Ca2+ influx was significantly reduced by NPS 2143, a CaSR-specific antagonist. These data indicated that some Umami substances/Umami-yielding materials could activate CaSR, but this property was not observed for all the Umami tasting substances.

Gas Sensing Mechanism of CuO/ZnO Heterojunction Gas Sensor (이종접합 가스센서의 가스감지기구)

  • Yi, S.H.;Chu, G.S.;Park, J.H.;Sung, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1114-1116
    • /
    • 1995
  • P/N(CuO/ZnO) Heterojunction gas sensors were made by 2-step sintering methods and its gas sensing property was measured by varying the injected gases and the operating temperatures. As the applied voltage was increased in air ambients, the current-voltage characteristics shown the ohmic properties. However, when the CO gas ambients, 500 ppm at $200^{\circ}C$, the current-voltage characteristics behaves like a rectifying diode s after 3 mins later and its conduction mechanism is discussed qualitatively for the first times.

  • PDF

Co Gas Sensing Property of ZnO/CuO Hetero-Contact Ceramics (ZnO와 CuO의 접촉형 세라믹스의 일산화탄소 가스 감응특성)

  • 전석택;최경만
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.7
    • /
    • pp.565-571
    • /
    • 1992
  • Gas sensing properties of P-N contact ceramics, composed of ZnO and CuO pairs sintered at different temperatures, were studied for 1% CO gas. Between 10$0^{\circ}C$ and 32$0^{\circ}C$ temperature range, it was observed that 2-probe current-voltage (I-V) characteristics, temperature and voltage dependence of sensivities were dependant largely upon ZnO samples. Pairs including a ZnO sample sintered at 110$0^{\circ}C$ showed maximum senitivity of 9 and 13 depending upon counterpart CuO samples, at 260~29$0^{\circ}C$. On the other hand, pairs including a ZnO samples sintered at 90$0^{\circ}C$ showed increasing sensitivity within in the measured temperature range and maximum sensitivities were about 4.

  • PDF