• Title/Summary/Keyword: Sensing Property

Search Result 287, Processing Time 0.028 seconds

Sensing Mechanism Property of $RuO_2$ Thick Film Resistor. ($RuO_2$ 후막저항을 이용한 압력센서의 출력특성 개선)

  • Lee, Seong-Jae;Park, Ha-Young;Min, Nam-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.350-351
    • /
    • 2006
  • Thick film mechanical sensors can be categorized into four main areas piezoresistive, piezoelectric, capacitive and mechanic tube. In this areas, the thick film strain gage is the earliest example of a primary sensing element based on the substrates. The latest thick film sensor is used various pastes that have been specifically developed for pressure sensor application. Some elastic materials exhibit a change in bulk resistivity when they are subjected to displacement by an applied pressure. This property is referred to as piezoresistivity and is a major factor influencing the sensitivity of a piezoresistive strain gage. The effect of thick film resistors was first noticed in the early 1970, as described by Holmes in his paper in 1973.

  • PDF

Generalized Orthogonal Matching Pursuit (일반화된 직교 매칭 퍼슛 알고리듬)

  • Kwon, Seok-Beop;Shim, Byong-Hyo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.122-129
    • /
    • 2012
  • As a greedy algorithm reconstructing the sparse signal from underdetermined system, orthogonal matching pursuit (OMP) algorithm has received much attention in recent years. In this paper, we present an extension of OMP for pursuing efficiency of the index selection. Our approach, referred to as generalized OMP (gOMP), is literally a generalization of the OMP in the sense that multiple (N) columns are identified per step. Using the restricted isometry property (RIP), we derive the condition for gOMP to recover the sparse signal exactly. The gOMP guarantees to reconstruct sparse signal when the sensing matrix satisfies the RIP constant ${\delta}_{NK}$ < $\frac{\sqrt{N}}{\sqrt{K}+2\sqrt{N}}$. In addition, we show recovery performance and the reduced number of iteration required to recover the sparse signal.

Compressed Sensing of Low-Rank Matrices: A Brief Survey on Efficient Algorithms (낮은 계수 행렬의 Compressed Sensing 복원 기법)

  • Lee, Ki-Ryung;Ye, Jong-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.5
    • /
    • pp.15-24
    • /
    • 2009
  • Compressed sensing addresses the recovery of a sparse vector from its few linear measurements. Recently, the success for the vector case has been extended to the matrix case. Compressed sensing of low-rank matrices solves the ill-posed inverse problem with fie low-rank prior. The problem can be formulated as either the rank minimization or the low-rank approximation. In this paper, we survey recently proposed efficient algorithms to solve these two formulations.

Hydrogen sulfide gas sensing mechanism study of ZnO nanostructure and improvement of sensing property by surface modification

  • Kim, Jae-Hyeon;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.450-450
    • /
    • 2011
  • This study reports the hydrogen sulfide gas sensing properties of ZnO nanorods bundle and the investigation of gas sensing mechanism. Also the improvement of sensing properties was also studied through the application of ZnO heterstructured nanorods. The 1-Dimensional ZnO nano-structure was synthesized by hydrothermal method and ZnO nano-heterostructures were prepared by sonochemical reaction. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectra confirmed a well-crystalline ZnO of hexagonal structure. The gas response of ZnO nanorods bundle sensor increased with increasing temperature, which is thought to be due to chemical reaction of nanorods with gas molecules. Through analysis of X-ray photoelectron spectroscopy (XPS), the sensing mechanism of ZnO nanorods bundle sensor was explained by well-known surface reaction between ZnO surface atoms and hydrogen sulfide. However at high sensing temperature, chemical conversion of ZnO nanorods becomes a dominant sensing mechanism in current system. In order to improve the gas sensing properties, simple type of gas sensor was fabricated with ZnO nano-heterostructures, which were prepared by deposition of CuO, Au on the ZnO nanorods bundle. These heteronanostructures show higher gas response and higher current level than ZnO nanorods bundle. The gas sensing mechanism of the heteronanostructure can be explained by the chemical conversion of sensing material through the reaction with target gas.

  • PDF

Influence of surface morphology on H2S sensing property of Cu2O thin film deposited by RF magnetron sputtering

  • Hien, Vu Xuan;You, Jae-Lok;Jo, Kwang-Min;Kim, Se-Yun;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.250-251
    • /
    • 2014
  • This study introduces a simple deposition of $Cu_2O$ thin films with surface morphologies composed of columns, submicron-rods and submicron-branches on glass substrate from metallic Cu targets by tailoring the $Ar/O_2$ ratios during the sputtering. The obtained samples were used to fabricate gas sensor. The $H_2S$ sensing properties of the sensors at working temperatures from $100^{\circ}C$ to $300^{\circ}C$ were studied, in which $Cu_2O$ submicron-branches performed the best sensing property comparing with the rest morphologies. A transformation of $Cu_2O$ to $Cu_2S$ and CuS was consider as a main factor to the sensing mechanism of the sensors.

  • PDF

An Efficient Spectrum Sensing Scheme for Cognitive Radio Systems with Multiple Antennas (다중 안테나 기반 인지 무선 시스템에서 효율적인 스펙트럼 센싱 기법)

  • Noh, Go-San;Lee, Je-Min;Hong, Dae-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.185-186
    • /
    • 2008
  • We propose an efficient spectrum sensing scheme for cognitive radio systems with multiple antennas. By utilizing the property of multiple receive antennas, spectrum sensing without idle period is possible. Simulation results show that the detection probability is enhanced with the number of receive antennas, which explains the effect of the spatial diversity.

  • PDF

Study on hybrid sensing matrix for compressive sensing of images (영상 압축 센싱을 위한 하이브리드 센싱 행렬 연구)

  • Phan, Minh Van;Dinh, Khanh Quoc;Jeon, Byeungwoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.230-231
    • /
    • 2014
  • Compressive sensing is a new sampling technique, which allows to sample a signal under the Nyquist-Shannon sampling rate. For block-based compressive sensing, a hybrid sensing matrix which contains low-frequency patterns in addition to the random Gaussian numbers is good for exploiting typical property of natural images. By noting that MH-BCS-SPL is well known for its good recovery performance, this paper investigates effect of the hybrid sensing matrix on MH-BCS-SPL in the sense of how large portion of low-frequency patterns can provide performance improvement.

  • PDF

Advanced Energy Detector with Correlated Multiple Antennas

  • Kim, Sungtae;Lim, Sungmook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4600-4616
    • /
    • 2021
  • In cognitive radio networks where unlicensed secondary users opportunistically access to licensed spectrum unused by licensed primary users, spectrum sensing is one of the key issues in order to effectively use the frequency resource. For enhancing the sensing performance in energy detection-based spectrum sensing, spatial diversity based on multiple antennas is utilized. However, the sensing performance can be degraded when antennas are spatially correlated, resulting in inducing the harmful interference to primary users. To overcome this problem, in this paper, an advanced energy detector is proposed. In the proposed sensing method, a weight matrix based on the eigenvalues of the spatial channels without any prior information on the primary signals is defined and utilized. In numerical simulations, it is shown that the proposed detector outperforms the conventional detector with regard to false-alarm and detection probabilities when antenna are spatially correlated.

Electrochemical Sensing Property of Harbor Pollutants using Viologen Derivative (Viologen 유도체를 이용한 항만오염물질의 전기화학적 특성)

  • Choi, Yong-Sung;Ji, Yoo-Kang;Park, Soo-Bong;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.997-999
    • /
    • 2008
  • In this paper, viologen derivative is used as charge transfer material to develop sensors for detecting the organic pollutants which are the main reason of harbor pollution. We fabricated self-assembled monolayers of viologen derivative on gold electrode of QCM and investigated an electrochemical behavior property. We also determined electrochemical sensing property about environmental pollution materials such as bezene, phosphate and surfactant through quantitative and qualitative analysis of charge transfer using intrinsic property of viologen derivative by temperature and concentration change. From the achieved results, we can apply and develope the detecting sensors for harbor pollutants.

  • PDF