Journal of information and communication convergence engineering
/
제19권2호
/
pp.67-72
/
2021
Wireless sensor networks (WSNs) require an enormous number of sensor nodes (SNs) to maintain processing, sensing, and communication capabilities for monitoring targeted sensing regions. SNs are generally operated by batteries and have a significantly restricted energy consumption; therefore, it is necessary to discover optimization techniques to enhance network lifetime by saving energy. The principal focus is on reducing the energy consumption of packet sharing (transmission and receiving) and improving the network lifespan. To achieve this objective, this paper presents a novel improved energy-efficient cluster-based routing protocol (IECRP) that aims to accomplish this by decreasing the energy consumption in data forwarding and receiving using a clustering technique. Doing so, we successfully increase node energy and network lifetime. In order to confirm the improvement of our algorithm, a simulation is done using matlab, in which analysis and simulation results show that the performance of the proposed algorithm is better than that of two well-known recent benchmarks.
이동 Ad hoc 네트워크 (MANET: Mobile Ad-hoc Network)는 기존의 통신 인프라의 구축 여부와 무관하게 무선 단말기간의 통신이 가능한 네트워크이다. Ad hoc 네트워크는 음영지역, 재난지역, 전쟁 시와 같은 통신 인프라가 구축되기 어려운 상황에서 유용하게 사용 될 수 있다. 그러나 음성 및 데이터 서비스 등과 같은 무선 서비스의 제공을 위해 많은 양의 네트워크 용량이 필요하게 되지만 기존의 제한된 주파수 자원에 따른 주파수 부족 상황 및 주파수 자원정책의 규제에 따라 원활한 주파수 사용이 어려운 상황이다. 이에 따라 높은 주파수 활용을 제공하는 무선 인지 시스템이 Ad-hoc네트워크에 적용하여 보다 다양하고 확장된 네트워크 서비스를 제공할 수 있다. 따라서, 본 논문에서는 AWGN 과 Rayleigh 채널 환경에서, 기존의 단일 스펙트럼 센싱 및 협력 스펙트럼 센싱과 비교하여 Ad-hoc 네트워크가 적용된 무선인지 시스템에서의 스펙트럼 센싱의 성능이 향상됨을 모의실험 및 성능 분석을 통하여 나타내었다.
In this paper, we investigate the resource allocation problem in time-varying heterogeneous wireless networks (HetNet) with multi-homing user equipments (UE). The stochastic optimization model is employed to maximize the network utility, which is defined as the difference between the HetNet's throughput and the total energy consumption cost. In harmony with the hierarchical architecture of HetNet, the problem of stochastic optimization of resource allocation is decomposed into two subproblems by the Lyapunov optimization theory, associated with the flow control in transport layer and the power allocation in physical (PHY) layer, respectively. For avoiding the signaling overhead, outdated dynamic information, and scalability issues, the distributed resource allocation method is developed for solving the two subproblems based on the primal-dual decomposition theory. After that, the adaptive resource allocation algorithm is developed to accommodate the timevarying wireless network only according to the current network state information, i.e. the queue state information (QSI) at radio access networks (RAN) and the channel state information (CSI) of RANs-UE links. The tradeoff between network utility and delay is derived, where the increase of delay is approximately linear in V and the increase of network utility is at the speed of 1/V with a control parameter V. Extensive simulations are presented to show the effectiveness of our proposed scheme.
가변감지범위를 갖는 무선센서네트워크의 수명연장을 위한 센서 노드의 전원 관리에서 요구되는 최대집합 커버문제를 유전자알고리즘을 이용하여 해결하였다. 기존의 경험적 탐용법(greedy heuristic method)에서는 네트워크의 동작 중 스케줄링을 반복 수행하므로 센서노드의 통신량이 증가한다. 제안한 방법에는 센서 노드의 통신 트래픽을 감소시켜 노드의 에너지 소모를 절약하여 네트워크의 수명을 연장하였다. 컴퓨터 시뮬레이션을 통해 제안한 방법의 유효성을 확인했으며 통신동작의 에너지 소모를 고려할 때 네트워크의 수명 이 약 10% 증가하였다.
중소기업에 예상되는 통신 관련 이슈는 1) IT 시스템이 구축되어 있는 경우 연계가 쉽지 않고, 2) 이기종 시스템에서 데이터 수집과 통합이 어렵고, 3) 다양한 Fieldbus 및 프로토콜이 존재하여 인터페이스가 쉽지 않다는 것이다. 보통 스마트공장 도입 전에 중소기업은 자동화가 구축되어 있는 경우가 많다. 중소기업의 자동화 대상 설비와 통신네트워크에 노후 된 Sensor와 이기종 시스템 수준에 맞게 Sensing 등 통신기술을 함께 제공할 필요가 있다. PI를 활용한 사전준비 시점에 최신 네트워크 기술을 적용하기 전에 각 유형별 네트워크 인터페이스 개선방안을 고찰하고자 한다.
When a camera is employed for 3D sensing, accurate camera calibration is vital as it is a prerequisite for the subsequent steps of the sensing process. Camera calibration is usually performed by complex mathematical modeling and geometric analysis. On the other contrary, data learning using an artificial neural network can establish a transformation relation between the 3D space and the 2D camera image without explicit camera modeling. However, a neural network requires a large amount of accurate data for its learning. A significantly large amount of time and work using a precise system setup is needed to collect extensive data accurately in practice. In this study, we propose a two-step neural calibration method that is effective when only a small amount of learning data is available. In the first step, the camera projection transformation matrix is determined using the limited available data. In the second step, the transformation matrix is used for generating a large amount of synthetic data, and the neural network is trained using the generated data. Results of simulation study have shown that the proposed method as valid and effective.
IEEE 802.11 무선랜은 CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance) 방식의 MAC(Media Access Control) 프로토콜을 사용하며, 데이터 충돌을 회피하기 위하여 데이터 전송 시 다른 사용자가 채널을 사용하고 있는지를 캐리어 감지를 통해 확인하게 된다. 현재 IEEE 802.11 표준에서는 캐리어 감지 범위에 영향을 주는 임계값을 일정한 고정 값으로 운용을 하고 있는데, 모바일 Ad-hoc 네트워크와 같이 이동성으로 인해 가변성이 큰 경우에는 고정 특정 캐리어 감지 임계값으로는 효율적인 네트워크 운영이 어렵다. 본 논문에서는 신호대간섭잡음비를 고려하여 캐리어 감지 임계값과 전송속도를 적절히 선택하는 제안된 SINR 기반 동적 캐리어 감지 임계값 방법을 모바일 Ad-hoc 네트워크 환경에 맞게 운영을 함으로써 더 좋은 네트워크 처리율을 얻을 수 있음을 보여준다.
본 논문에서는 고밀집 환경에서 대용량 MIMO가 장착된 무선랜 시스템의 효율을 높이기 위한 방식으로 결합공간 분할 및 재사용 기법을 제안한다. 제안한 기법은 다중 안테나로 생성할 수 있는 공간 자원을 간섭을 미리 억제하는데 사용하는 공간 자원과 캐리어 센싱 및 전송을 하는데 이용하는 공간 자원으로 분리한다. 분리된 공간자원의 양에 따라 다른 캐리어 센싱 한계값을 할당하여, 해당 공간 자원으로의 전송 여부를 결정한다. 이 방식은 공간 분할 (spatial division) 최적화 문제와 공간 재사용 (spatial reuse) 최적화 문제를 동시에 고려해 네트워크의 전송 용량을 최대화한다. 시뮬레이션을 통해 제안한 기법이 IEEE 802.11에서 정의된 캐리어 센싱 기법보다 네트워크의 용량을 133% 증가시키므로 차세대 무선랜 시스템에 적용하여 사용자에게 우수한 전송 품질을 제공해 줄 수 있음을 보인다.
International Journal of Computer Science & Network Security
/
제22권2호
/
pp.214-222
/
2022
Convolutional Neural networks (CNNs) are a category of deep learning networks that have proven very effective in computer vision tasks such as image classification. Notwithstanding, not much has been seen in its use for remote sensing image classification in developing countries. This is majorly due to the scarcity of training data. Recently, transfer learning technique has successfully been used to develop state-of-the art models for remote sensing (RS) image classification tasks using training and testing data from well-known RS data repositories. However, the ability of such model to classify RS test data from a different dataset has not been sufficiently investigated. In this paper, we propose a deep CNN model that can classify RS test data from a dataset different from the training dataset. To achieve our objective, we first, re-trained a ResNet-50 model using EuroSAT, a large-scale RS dataset to develop a base model then we integrated Augmentation and Ensemble learning to improve its generalization ability. We further experimented on the ability of this model to classify a novel dataset (Nig_Images). The final classification results shows that our model achieves a 96% and 80% accuracy on EuroSAT and Nig_Images test data respectively. Adequate knowledge and usage of this framework is expected to encourage research and the usage of deep CNNs for land cover mapping in cases of lack of training data as obtainable in developing countries.
본 논문에서는 인지 라디오 네트워크를 구성하는 기본요소와, 그를 위협하는 공격 유형에 대하여 살펴본다. 특히, SSDF (Spectrum Sensing Data Falsification) 공격에 대하여 자세히 살펴보고, 이를 극복하기 위한 해법을 제시한다. SSDF 공격은 실현하기 쉬운 반면, 이를 탐지하고 대응하기 위하여 많은 노력이 필요하다. 본 논문에서 제안하는 기법은 악의적인 사용자와 그들의 센싱 리포트를 구분해 내기 위하여 이상 탐지 (Anomaly Detection) 기술을 사용 한다. 제안하는 기법의 유효성을 검증하기 위하여 시뮬레이션을 수행 하였으며, 그 결과 비정상적인 센싱 리포트를 효과적으로 구분해 내고 활성화 된 주 사용자(Primary User)를 정확히 탐지해 내는 것을 확인 할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.