• Title/Summary/Keyword: Sensing

Search Result 11,998, Processing Time 0.046 seconds

Cooperative Spectrum Sensing for Cognitive Radio Networks with Limited Reporting

  • So, Jaewoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2755-2773
    • /
    • 2015
  • Cooperative spectrum sensing increases the detection performance in a cognitive radio network, based on the number of sensing nodes. However, as the number of sensing nodes increases, the reporting overhead linearly increases. This paper proposes two kinds of cooperative spectrum sensing with limited reporting in a centralized cognitive radio network, a soft combination with threshold-based reporting (SC-TR) and a soft combination with contention-based reporting (SC-CR). In the proposed SC-TR scheme, each sensing node reports its sensing result to the fusion center through its own reporting channel only if the observed energy value is higher than a decision threshold. In the proposed SC-CR scheme, sensing nodes compete to report their sensing results via shared reporting channels. The simulation results show that the proposed schemes significantly reduce the reporting overhead without sacrificing the detection performance too much.

Advanced Sensing Techniques of Energy Detection in Cognitive Radios

  • Wang, Han-O;Noh, Go-San;Kim, Dong-Kyu;Kim, Sung-Tae;Hong, Dae-Sik
    • Journal of Communications and Networks
    • /
    • v.12 no.1
    • /
    • pp.19-29
    • /
    • 2010
  • Recently, spectrum sensing has been intensively studied as a key technology in realizing the cognitive radio. There have been advances in the performance of spectrum sensing through both multi-antenna and cooperative sensing schemes. In this paper, the performances and complicated scenarios of the latest spectrum sensing schemes are analytically compared and arranged into a technical tree while considering practical concerns. This paper will give a macroscopic view of spectrum sensing and will also provide insight into future spectrum sensing works.

Orthogonal Signaling-based Sensing Data Reporting for Cooperative Spectrum Sensing in Cognitive Radio

  • Ko, Jae-Hoon;Kwon, Soon-Mok;Kim, Chee-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.287-295
    • /
    • 2011
  • Cognitive radio (CR) features opportunistic access to spectrum when licensed users (LU) are not operating. To avoid interference to LU, cognitive users (CU) need to perform spectrum sensing. Because of local shadowing, fading, or limited sensing capability, it is suggested that multiple CUs cooperate to detect LU. In cooperative spectrum sensing, CUs should exchange their sensing data with minimum bandwidth and delay. In this paper, we introduce a novel method to efficiently report sensing data to the central node in an infrastructured OFDM-based CR network. All CUs simultaneously report their sensing data over unique and orthogonal signals on locally available subcarriers. By detecting the signals, the central node can determine subcarrier availability for each CU. Implementation challenges are identified and then their solutions are suggested. The proposed method is evaluated through simulation on a realistic channel model. The results show that the proposed method is feasible and efficient.

Preliminary Results On Radar Measurement Of Paddy Field Using C-Band Scatterometer System

  • Jamil, H.;Ali, A.;Yusof, S.;Ahmad, Z.;Mahmood, K.A.;Abu Bakar, S.B.;Aziz, H.;Ibrahim, N.;Koo, V.C.;Sing, L.K.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1002-1004
    • /
    • 2003
  • A ground-based, C-band full polarimetric mobile Scatterometer system has been developed in Malaysia with collaboration between Malaysian Centre for Remote Sensing (MACRES) and Multimedia University (MMU). The main purpose of this system is to measure and monitor backscattering coefficient, ${\sigma }^0$, for earth terrain such as paddy fields, forest and soil surfaces. This paper describes the preliminary results on radar backscatter measurement from paddy field using the mobile C-band Scatterometer system. The measurement campaign was conducted at Sungai Burung area in April 2003. Real time data were collected using four polarization modes (HH, HV, VV and VH), at various incidence angles ranging from 0$^0$ to 60$^0$. The measurement data show consistent results as compared to other reports, which verify the capability of this Scatterometer system as a useful tool for remote sensing.

  • PDF

Block-Time of Arrival/Leaving Estimation to Enhance Local Spectrum Sensing under the Practical Traffic of Primary User

  • Tran, Truc Thanh;Kong, Hyung Yun
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.514-526
    • /
    • 2013
  • With a long sensing period, the inter-frame spectrum sensing in IEEE 802.22 standard is vulnerable to the effect of the traffic of the primary user (PU). In this article, we address the two degrading factors that affect the inter-frame sensing performance with respect to the random arrival/leaving of the PU traffic. They are the noise-only samples under the random arrival traffic, and the PU-signal-contained samples under the random leaving traffic. We propose the model in which the intra-frame sensing cooperates with the inter-frame one, and the inter-frame sensing uses the time-of-arrival (ToA), and time-of-leave (ToL) detectors to reduce the two degrading factors in the inter-frame sensing time. These ToA and ToL detectors are used to search for the sample which contains either the ToA or ToL of the PU traffic, respectively, which allows the partial cancelation of the unnecessary samples. At the final stage, the remaining samples are input into a primary user detector, which is based on the energy detection scheme, to determine the status of PU traffic in the inter-frame sensing time. The analysis and the simulation results show that the proposed scheme enhances the spectrum-sensing performance compared to the conventional counter-part.

Hydrogen sulfide gas sensing mechanism study of ZnO nanostructure and improvement of sensing property by surface modification

  • Kim, Jae-Hyeon;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.450-450
    • /
    • 2011
  • This study reports the hydrogen sulfide gas sensing properties of ZnO nanorods bundle and the investigation of gas sensing mechanism. Also the improvement of sensing properties was also studied through the application of ZnO heterstructured nanorods. The 1-Dimensional ZnO nano-structure was synthesized by hydrothermal method and ZnO nano-heterostructures were prepared by sonochemical reaction. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectra confirmed a well-crystalline ZnO of hexagonal structure. The gas response of ZnO nanorods bundle sensor increased with increasing temperature, which is thought to be due to chemical reaction of nanorods with gas molecules. Through analysis of X-ray photoelectron spectroscopy (XPS), the sensing mechanism of ZnO nanorods bundle sensor was explained by well-known surface reaction between ZnO surface atoms and hydrogen sulfide. However at high sensing temperature, chemical conversion of ZnO nanorods becomes a dominant sensing mechanism in current system. In order to improve the gas sensing properties, simple type of gas sensor was fabricated with ZnO nano-heterostructures, which were prepared by deposition of CuO, Au on the ZnO nanorods bundle. These heteronanostructures show higher gas response and higher current level than ZnO nanorods bundle. The gas sensing mechanism of the heteronanostructure can be explained by the chemical conversion of sensing material through the reaction with target gas.

  • PDF

Silence Reporting for Cooperative Sensing in Cognitive Radio Networks

  • Kim, Do-Yun;Choi, Young-June;Choi, Jeung Won
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.59-64
    • /
    • 2018
  • A cooperative spectrum sensing has been proposed to improve the sensing performance in cognitive radio (CR) network. However, cooperative sensing causes additional overhead for reporting the result of local sensing to the fusion center. In this paper, we propose a technique to reduce the overhead of data transmission of cooperative sensing for applying the quantum data fusion technique in cognitive radio networks by omitting the lowest quantized in the local sensed results. If a CR node senses the lowest quantized level, it will not send its local sensing data in the corresponding sensing period. The fusion center can implcitly know that a spectific CR node sensed lowest level if there is no report from that CR node. The goal of proposed sensing policy is to reduce the overhead of quantized data fusion scheme for cooperative sensing. Also, our scheme can be adapted to all quantized data fusion schemes because it only deal with the form of the quantized data report. The experimental results show that the proposed scheme improves performance in terms of reporting overhead.

An Empirical Evaluation of Stone-shaped Physiological Sensing Interface (돌 형태의 휴대용 생체신호 측정 인터페이스의 경험적인 평가 및 분석)

  • Choi, Ah-Young;Woo, Woon-Tack
    • Journal of the HCI Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Recently researchers have studied mobile physiological sensing device. However, previous works focused on multiple and real time physiological sensing method, instead of aesthetic shape of sensing devices, sensing comfort during monitoring and sensing reliability against the hand motion artifact. In this work, we propose a stone shaped physiological sensing device to monitor the physiological status in a daily life which maximize the aesthetic feeling and sensing comfort and sensing reliability. We proposed stepwise user centered design process for user centric physiological sensing device and evaluated appropriate sensing positions against the hand motion artifacts and pressure from sensors. From the usability test and experiments, we verified the proposed sensing device provides the aesthetic appeals, sensing comfort and sensing reliability. We expect that this work can be applied in the various health care applications in near future.

  • PDF

Satellite Remote Sensing of Groundwater: modeling, algorithm development and validation

  • Ghulam, Abduwasit;Qin, Qiming
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1383-1385
    • /
    • 2003
  • Remote sensing has been widely used in the exploration of groundwater. In this paper, on the establishment of empirical function between ground water and soil moisture content 6S code is used to reduce uncertainties in the remote sensing of groundwater. Then ground water levels are calculated using 6S corrected and uncorrected ETM+ image along with isochronous meteorological information. Greater correspondence between field examined and satellite monitoring data is obtained from corrected image than from the uncorrected image.

  • PDF