• Title/Summary/Keyword: Sensing

Search Result 12,061, Processing Time 0.04 seconds

Asynchronous Cooperative Spectrum Sensing Scheme on Primary Users with Fast "On/Off" State Variations in Spectrum Sensing Windows

  • Jin, Jingying;Gu, Junrong;Kim, Jae Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.10
    • /
    • pp.832-842
    • /
    • 2013
  • Cognitive Radio has attracted intensive interests of the researchers, recently. The data rate always increases in the emerging technologies. The increased data rate poses mainly two challenges for spectrum sensing. One is that the state of primary user (PU) is fast and alternatively varying between "on/off" in a spectrum sensing window. The other is that the asynchronicity among the reports in a cooperative spectrum sensing setting becomes more apparent. Both of them would deteriorate the spectrum sensing performance. Thus, we propose an asynchronous cooperative spectrum sensing method to cope with these two challenges. A likelihood ratio test based spectrum sensing is developed for a single cooperator. The likelihood ratio is obtained in the setting of fast varying PU state. The likelihood ratio test is uniformly powerful according to the Neyman-pearson lemma. Furthermore, the asynchronicity among the cooperators are studied. Two sets of fusion weights are discussed for the asynchronous time among cooperators. One is designed based on the condition probability of the PU state variation and the other one is designed based on the queueing theory. The simulation results are provided with different fusion methods. The performance improvements are demonstrated.

Study on Imaging with Scanning Airborne W-band Millimeter Wave Radiometer

  • Kong, De-Cai;Kim, Yong-Hoon;Li, Jing;Zhang, Sheng-Wei;Sun, Mao-Hua;Liu, He-Guang;Jiang, Jing-Shan
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.593-597
    • /
    • 2002
  • The paper introduces a research on the W-band Millimeter Wave Radiometer(RADW92) through an airborne experiment. Microwave remote sensing images of part of the Yellow River and the WeiHe River are of fared. Analysis of factors influencing the image qualities as well as the resolutions to them are also included. The RADW92 is the first generation of Millimeter Wave Radiometer in China, which works with operating frequency 92 GHz, the bandwidth 2 GHz, the integration time 60ms, the system sensitivity 0.6k and the linearity better than 0.999. Cassegrain Antenna is designed for imaging by conically scanning. The result of the experiment suggested that RADW92 had been adequate for space use.

  • PDF

THE MECHANICAL DESIGN AND CONSTRUCTION OF A TRUCK MOUNTED SCATTEROMETER SYSTEM

  • Aziz, H.;Mahmood, N.N.;Ali, A.;Ibrahim, N.;Ahmad, Z.;Mahmood, K.A.;Jamil, H.;Brevern, P.V.;Koo, V.C.;Sing, L.K.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1009-1011
    • /
    • 2003
  • The procurement of mobile microwave scatterometer involve the consideration to ensure vehicle and equipment selection full-filled technical requirement and safety standard in Malaysia. Designing, and modification works involve engineering methodology in determining and selecting a suitable hydraulic telescopic boom that suit a selected vehicle available from the market. The vehicle is also a delivery system for microwave remote sensing equipment and other accessories to any locations in Malaysia. Total loading to be carried by the vehicle is about 4500 kg and its overall weight must be 16,000 kg as recommended by hydraulic telescopic boom manufacturers. The telescopic boom will elevate microwave scatterometer system and antenna to a maximum height of 27 m, and can also be rotated through 360$^{\circ}$. A mechanism is incorporated in the system to enable tracking or monitoring angular movement of the hydraulic telescopic boom when positioned towards required target.

  • PDF

Detection of Foliar Nutrients of Oil Palm Crop Using Remote Sensing

  • Ibrahim, Ab.Latif;Hashim, Mazlan;Rasib, Abd.Wahid;Ali, Mohamad Idris;Kadir, Wan Hazli Wan;Sumairi, Mohd Razif;Haron, Khalid
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.558-560
    • /
    • 2003
  • This paper examines the capability of remote sensing technique for detecting and quantifying the foliar nutrients of oil palm crop. Study has been carried out in the Malaysian Palm Oil Board (MPOB) Research Station in Kluang Johore, Malaysia. Result of the study shows a strong relationship between measured foliar nutrient and the spectral reflectance measured using spectroradiometer. Model that has been developed can be used to estimate the nutrient concentration in the oil palm plantation at micro level and also at macro -level using appropriate satellite data.

  • PDF

An ANN-based Intelligent Spectrum Sensing Algorithm for Space-based Satellite Networks

  • Xiujian Yang;Lina Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.980-998
    • /
    • 2023
  • In Low Earth Orbit (LEO) satellite networks, satellites operate fast and the inter-satellite link change period is short. In order to sense the spectrum state in LEO satellite networks in real-time, a space-based satellite network intelligent spectrum sensing algorithm based on artificial neural network (ANN) is proposed, while Geosynchronous Earth Orbit (GEO) satellites are introduced to make fast and effective judgments on the spectrum state of LEO satellites by using their stronger arithmetic power. Firstly, the visibility constraints between LEO satellites and GEO satellites are analyzed to derive the inter-satellite link building matrix and complete the inter-satellite link situational awareness. Secondly, an ANN-based energy detection (ANN-ED) algorithm is proposed based on the traditional energy detection algorithm and artificial neural network. The ANN module is used to determine the spectrum state and optimize the traditional energy detection algorithm. GEO satellites are used to fuse the information sensed by LEO satellites and then give the spectrum decision, thereby realizing the inter-satellite spectrum state sensing. Finally, the sensing quality is evaluated by the analysis of sensing delay and sensing energy consumption. The simulation results show that our proposed algorithm has lower complexity, the sensing delay and sensing energy consumption compared with the traditional energy detection method.

Performance Comparison of Spectrum Sensing according to Structure of Sensing Receiver (센싱 수신기 구조에 따른 스펙트럼 센싱의 성능 비교)

  • Kang, Bub-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1891-1897
    • /
    • 2009
  • This paper describes the optimization of the spectrum sensing in terms of the throughput of the cognitive radio (CR)system. The conventional rapers do not describe the optimization problem of the spectrum sensing by considering the channel search and channel move of the CR system to be caused by the appearance of the incumbent user. However this paper evaluates the throughput of the CR user by considering the situations such as the channel search and channel move additionally. Also, this paper suggests the sensing structure being separated the data receiver from sensing receiver, and compares the sensing performance for the same receiver structure of sensing and communication with that for the separated sensing receiver in terms of the throughput of the CR user. The numerical result demonstrates that the performance of the throughput efficiency is improved by the proposed sensing receiver to be separated from the data communication path.

Wearable Sensing Device Design for Biological Monitoring (생체정보 모니터링을 위한 웨어러블 센싱 디바이스 디자인)

  • Lee, Jee Hyun;Lee, Eun Ji;Kim, Ji Eun;Kim, Yoolee;Cho, Sinwon
    • Journal of the Korean Society of Costume
    • /
    • v.65 no.1
    • /
    • pp.118-135
    • /
    • 2015
  • In recent years, smart clothing had been developed in order to better detect and monitor physical movement of the patient, so that such activities such as location identification and biometric recognition could be done. However, most of the sensing devices of smart clothing were limited to smart sensing sports clothing and the designs did not consider the physical characteristics and the behavior of the wearer. Therefore, this study aimed to create an open protection system by developing a wearable sensing device for health monitoring and location information. For this purpose, this study developed eleven types of wearable sensing design that could be commercially sold and worn by people who needed their biological information to be constantly monitored. The study conducted four tests in order to develop three types of sensing devices for various sensing wears. The purpose of this study was to expand the user rang of smart sensing wears, and provide a foundation for the development of distinctive wearable sensing devices reflecting the user. Furthermore, contribute to the design for the person subject to protection.

An Efficient Spectrum Sensing Technique for Wireless Energy Harvesting Systems (무선에너지하비스팅 시스템을 위한 효율적인 스펙트럼 센싱 기법)

  • Hwang, Yu Min;Shin, Yoan;Kim, Dong In;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.141-145
    • /
    • 2017
  • Spectrum sensing is a critical functionality of Cognitive Radio(CR) systems and the CR systems can be applied to RF energy harvesting systems to improve an energy harvesting rate. There are number of spectrum sensing techniques. One of techniques is energy detection. Energy detection is the simplest detection method and is the most commonly used. But, energy detection has a hidden terminal problem in real wireless communication, because of secondary user (SU) can be affected by frequency fading and shadowing. Cooperative spectrum sensing can solve this problem using spatial diversity of SUs. But it has a problem of increasing data by processing multiple secondary. So, we propose the system model using adaptive spectrum sensing algorithm and system model is simulated. This algorithm chooses sensing method between single energy sensing and cooperative energy according to the received signal's Signal to Noise Ratio (SNR) from Primary User (PU). The simulation result shows that adaptive spectrum sensing has an efficiency and improvement in CR systems.

A Robust Spectrum Sensing Method Based on Localization in Cognitive Radios (인지 무선 시스템에서 위치 추정 기반의 강인한 스펙트럼 검출 방법)

  • Kang, Hyung-Seo;Koo, In-Soo
    • Journal of Internet Computing and Services
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • The spectrum sensing is one of the fundamental functions to realize the cognitive radios. One of problems in the spectrum sensing is that the performance of spectrum sensing can be degraded due to fading and shadowing. In order to overcome the problem, cooperative spectrum sensing method is proposed, which uses a distributed detection model and can increase sensing performance. However, the performance of cooperative spectrum sensing can be still affected by the interference factors such as obstacle and malicious user. Especially, most of cooperative spectrum sensing methods only considered the stationary primary user. In the ubiquitous environment, however the mobile primary users should be considered. In order to overcome the aforementioned problem, in this paper we propose a robust spectrum detection method based on localization where we estimate the location of the mobile primary user, and then based on the location and transmission range of primary user we detect interference users if there are, and then the local sensing reporting from detected interference users are excluded in the decision fusion process. Through simulation, it is shown that the sensing performance of the proposed scheme is more accurate than that of conventional other schemes

A Cooperative Spectrum Sensing Method based on Eigenvalue and Superposition for Cognitive Radio Networks (인지무선네트워크를 위한 고유값 및 중첩기반의 협력 스펙트럼 센싱 기법)

  • Miah, Md. Sipon;Koo, Insoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.39-46
    • /
    • 2013
  • Cooperative spectrum sensing can improve sensing reliability, compared with single node spectrum sensing. In addition, Eigenvalue-based spectrum sensing has also drawn a great attention due to its performance improvement over the energy detection method in which the more smoothing factor, the better performance is achieved. However, the more smoothing factor in Eignevalue-based spectrum sensing requires the more sensing time. Furthermore, more reporting time in cooperative sensing will be required as the number of nodes increases. Subsequently, we in this paper propose an Eigenvalue and superposition-based spectrum sensing where the reporting time is utilized so as to increase the number of smoothing factors for autocorrelation calculation. Simulation result demonstrates that the proposed scheme has better detection probability in both local as well as global detection while requiring less sensing time as compared with conventional Eigenvalue-based detection scheme.