• Title/Summary/Keyword: Sensible waste heat

Search Result 14, Processing Time 0.024 seconds

Study on Energy Saving Properties by using City- Water as a Heat Source for Dwellings

  • Chung, Yong-Hyun;Mizuno, Minoro;Simoda, Yoshiyuki;Kum, Jong-Soo;Choi, Kwang-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.168-176
    • /
    • 1998
  • A simulation study was conducted to use city-water which is thermally regulated by unused energy as a heat source for urban dwellings. This study utilized multiple heat pump system using the city-water as a heat source and suggested a method of reducing the heat load of hot water supply. The simulation was done to calculate the energy savings at a dwelling for a year. The relation between the controlled temperature of city-water. and electric energy in all seasons was also investigated. Furthermore, it has been found that the controlled water system can lead to considerable energy savings and decrease environmental load such as sensible waste heat which otherwise would form heat islands.

  • PDF

Prediction of Performance in heat regenerator with spheres (구형축열체를 이용한 축열기의 성능예측)

  • 조한창;조길원;이용국
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.11a
    • /
    • pp.299-304
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of regenerative combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerators with spherical particles were numerically analyzed to evaluate performance of ratio of waste heat recovery and temperature efficiency and to suggest optimized conditions of heat regenerator. It is predicted that exhaust gases temperature at regenerator outlet of 3.5$\times$10$^{6}$ kcal/hr heat regenerator is even lower than design condition and ratio of waste heat recovery is 75.8%.

  • PDF

Performance Prediction of Heat Exchanger for Waste Heat Recovery from Humid Flue Gases (습증기를 포함한 연소가스의 폐열회수를 위한 열교환기 성능 예측)

  • Jeong, Dong-Woon;Lee, Sang-Yong;Lee, Han-Ju
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.276-281
    • /
    • 2000
  • A simulation program using the mass transfer correlation was constructed to analyze 1-D simplified condensing flow across the tube bank. Higher efficiency was anticipated by reducing the flue gas temperature down below the dew point where the water vapor in the flue gas is condensed at the surface of the heat exchanger; that is, the heat transfer by the latent heat is added to that by the sensible heat. Thus, there can be an optimum operating condition to maximize the heat recovery from the flue gas. The temperature rises of the flue gas and the cooling water between the inlet and the outlet of the tube bank were compared with the experimental data reported previously. The predicted results agree well with the experimental data. Using this simulation program, the parametric studies have been conducted fur various operating conditions, such as the velocities and temperatures of the vapor/gas mixture and the cooling water, the number of the rows, and the conductivity of the wall material.

  • PDF

Performance Analysis of Sensible and Latent Energy Recovery System for Thermally Controlled Facility

  • Park, Byung-Kyu;Kim, Moo-Geun;Kim, Geun-Oh
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.4
    • /
    • pp.17-26
    • /
    • 2001
  • Simulation was conducted using TRNSYS to evaluate the thermal performance of a facility. This facility has a condensing-type heat exchanger which is able to recover the latent energy for the purpose of reducing the heating energy in winter. The boiler and chiller are selected based on the annual peak loads and controlled to maintain the facility at the set temperature of 14~$17^\circ{C}$. Supplied energy by the boiler and recovered energy by the heat exchanger were calculated as a function of number of pass through heat exchanger, kind of fuel and hot water velocity. Simulation results show that about 20% of the total heating load can be recovered by the heat exchanger and the amount of latent heat is increasing with the number of pass. This means that the efficiency of the waste energy recovery system can be increased by using a condensing-type heat exchanger rather than a traditional sensible heat exchanger.

  • PDF

Thermodynamic Performance Characteristics of Organic Rankine Cycle (ORC) using LNG Cold Energy (LNG 냉열을 이용하는 유기랭킨사이클(ORC)의 열역학적 성능 특성)

  • Kim, Kyoung Hoon;Ha, Jong Man;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.41-47
    • /
    • 2014
  • In this work a thermodynamic performance analysis is carried out for a combined cycle consisted of an organic Rankine cycle (ORC) and a LNG cycle. The combined system uses a low grade waste heat in the form of sensible energy and the LNG cold energy is used for power generation as well as for heat sink. The effects of the key parameters of th system such as turbine inlet pressure, condensation temperature and source temperature on the characteristics of system are throughly investigated. The simulation results show that the thermodynamic performance of the combined system can be significantly improved compared to the normal ORC which is not using the LNG cold energy.

Dynamic thermal Design of a 1-ton Class Bio-Hydrogen Production System Simulator Using Industrial Waste Heat and by-Products (산업배열 및 부산물을 활용한 1톤급 바이오수소 생산 시뮬레이터 동적 열설계)

  • Kim, Hyejun;Kim, Seokyeon;Ahn, Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.5
    • /
    • pp.259-268
    • /
    • 2017
  • This paper proposes a hydrogen-based social economy derived from fuel cells capable of replacing fossil fuels and resolving global warming, It thus provides an entry for developing economically feasible social configurations to make use of bio-hydrogen production systems. Bio-hydrogen production works from the principle that microorganisms decompose water in the process of converting CO to $CO_2$, thereby producing hydrogen. This study parts from an analysis of an existing 157-ton class NA1 bio-hydrogen reactor that identifies the state of feedstock and reactor conditions. Based on this analysis, we designed a 1-ton class bio-hydrogen reactor process simulator. We carried out thermal analyses of biological heat reactions, sensible heat, and heat radiation in order to calculate the thermal load of each system element. The reactor temperature changes were determined by modeling the feed mixing tank capacity, heat exchange, and heat storage tank. An analysis was carried out to confirm the condition of the feed mixing tank, heat exchanger, heat storage tank capacity as well as the operating conditions of the system so as to maintain the target reactor temperature.

Numerical Study of the Post Combustion Chamber of Grate Type Incinerator in Daejon 4th Industrial Complex (대전 4공단 소각로 후연소로 모델 연구)

  • Kim Hey-Suk;Shin Mi-Soo;Jang Dong-Soon;Park Byung-Soo;Um Tae-In
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.133-138
    • /
    • 2002
  • A 3-D axisymmetric computer program is developed to predict the NO behavior in SNCR system for the stoker incinerator with the waste treatment capacity, 200ton/day. To this end a turbulent reacting flow field calculation is made using proper assumption and empiricism. The stoker bed is assumed to be a homogeneous waste-volatilized gaseous state. The initial composition or reactants are assumed based on the data of the ultimate analysis. Turbulent is resolved by k-e model and turbulent reaction is handled by eddy-breakup model harmonized with empirical chemistry data for gaseous combustion, NO and urea reaction. The liquid droplet is traced by Lagrangian method incorporated by aerodynamic drag, Coriolis and crntrifugal forces. Radiation is treated by sensible heat loss model. Calculation results are in good agreement with experimental data at the outlet of post combustion chamber in Daejon 4th industrial complex. The flue gas shows the temperature range of $900\sim1000^{\circ}C$, velocity of 5m/s and NO concentration of 140ppm at the exit while the measured temperature, flue gas velocity and NO concentration are $967^{\circ}C$, $3\sim4m/s$ and $100\sim200ppm$respectively. Using the developed computer program a parametric study has been made with the variation of heat content of waste, castable length and SNCR variables for the determination of proper injector location. In general, the calculated results are consistent and physically acceptable.

  • PDF

Performance Analysis of Ammonia-Water Regenerative Rankine Cycles for Use of Low-Temperature Energy Source (저온 열원 활용을 위한 암모니아-물 재생 랭킨 사이클의 성능 해석)

  • Kim, Kyoung-Hoon;Han, Chul-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.15-22
    • /
    • 2011
  • It is a great interest to convert more energy in the heat source into the power and to improve the efficiency of power generating processes. Since the efficiency of power generating processes becomes poorer as the temperature of the source decreases, to use an ammonia-water mixture instead of water as working fluid is a possible way to improve the efficiency of the system. In this work performance of ammonia-water regenerative Rankine cycle is investigated for the purpose of extracting maximum power from low-temperature waste heat in the form of sensible energy. Special attention is paid to the effect of system parameters such as mass fraction of ammonia and turbine inlet pressure on the characteristics of system. Results show that the power output increases with the mass fraction of ammonia in the mixture, however workable range of the mass fraction becomes narrower as turbine inlet pressure increases and is able to reach 16.5kW per unit mass flow rate of source air at $180^{\circ}C$.

Effect of the Array Type of Heat Exchangers on Performance of Refrigerated Warehouse for Utilization of LNG Cold Energy (LNG 냉열활용을 위한 열교환기의 배열 형태가 냉동창고 성능에 미치는 연구)

  • HAN, DANBEE;KIM, YUNJI;BYUN, HYUNSEUNG;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.282-288
    • /
    • 2019
  • When liquefied natural gas (LNG) is vaporized to form natural gas for industrial and household consumption, a tremendous amount of cold energy is transferred from LNG to seawater as a part of the phase-change process. This heat exchange loop is not only a waste of cold energy, but causes thermal pollution to coastal fishery areas by dumping the cold energy into the sea. This project describes an innovative new design for reclaiming cold energy for use by cold storage warehouses (operating in the 35 to $62^{\circ}C$ range). Conventionally, warehouse cooling is done by mechanical refrigeration systems that consume large amounts of electricity for the maintenance of low temperatures. Here, a closed loop LNG heat exchange system was designed (by simulator) to replace mechanical or vapor-compression refrigeration systems. The software PRO II with PROVISION V9.4 was used to simulate LNG cold energy, gas re-liquefaction, and the vaporized process under various conditions. The effects on sensible and latent heats from changes to the array type of heat exchangers have been investigated, as well as an examination of the optimum.

A Study of Simulation on the Refrigerated Warehouse System Based on the Cold Energy of Lng Using the Pro-Ii Simulator (LNG 냉열을 이용한 냉장·냉동 창고 모사에 관한 연구)

  • HAN, DANBEE;KIM, YOONJI;YEOM, KYUIN;SHIN, JAERIN;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.401-406
    • /
    • 2017
  • When Liquified Natural Gas (LNG) is vaporized into NG for industrial and household usage, tremendous cold energy was transferred from LNG to seawater during phase-changing process. This heat exchanger loop is not only a waste of huge cold energy, but will cause thermal pollution to the coastal fishery area also when cold water was re-injected into the sea. In this study, an innovation design has been performed to reclaim the cold energy for -35 to $62^{\circ}C$ refrigerated warehouse. Conventionally, this was done by installing mechanical refrigeration systems, necessitating tremendous electrical power to drive temperature. A closed loop LNG heat exchangers in series was designed to replace the mechanical or vapor-compression refrigeration cycle by process simulator. The process simulation software of PRO II with provision has been used to simulate this process for various conditions, what to effect on cold energy and used energy for re-liquefaction and evaporation process. In addition, through analysis the effect of the change of LNG supply pressure on sensible and latent heat, optimum operational conditions was suggested for LNG cold energy warehouse.