• Title/Summary/Keyword: Sensible heat ratio

Search Result 49, Processing Time 0.028 seconds

Multi- effect air gap membrane distillation process for pesticide wastewater treatment

  • Pangarkar, Bhausaheb L.;Deshmukh, Samir K.;Thorat, Prashant V.
    • Membrane and Water Treatment
    • /
    • v.8 no.6
    • /
    • pp.529-541
    • /
    • 2017
  • A multi-effect air gap membrane distillation (ME-AGMD) module for pesticide wastewater treatment is studied with internal heat recovery, sensible heat of brine recovery, number of stages and the use of fresh feed as cooling water in a single module is implemented in this study. A flat sheet polytetrafluroethylene (PTFE) membrane was used in the 4-stage ME-AGMD module. The maximum value of permeate flux could reach $38.62L/m^2h$ at feed -coolant water temperature difference about $52^{\circ}C$. The performance parameter of the module like, specific energy consumption and gain output ratio (GOR) was investigated for the module with and without heat recovery. Also, the module performance was characterized with respect to the separation efficiency of several important water quality parameters. The removal efficiency of the module was found to be >98.8% irrespective water quality parameters. During the experiment the membrane fouling was caused due to the deposition of the salt/crystal on the membrane surface. The membrane fouling was controlled by membrane module washing cycle 9 h and also by acidification of the feed water (pH=4) using 0.1M HCl solution.

Thermal Design of a Cooling Coil for Building Air Conditioning (건물 공조용 냉수 코일의 열 설계)

  • Kim, Nae-Hyun;Byun, Ho-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6445-6452
    • /
    • 2015
  • The surface of the cooling coil becomes dry, wet or partially wet depending on the operating condition. Thus, a proper design of the cooling coil should include a heat transfer analysis on dry, wet or partially wet surfaces. In this study, an elementary model, which analyzes the cooling on an elementaty basis, is proposed. Comparison of the predictions of the model with experimental data of the cooling coil revealed that heat transfer rates were predicted within 10.1%, airside pressure drop within 11.1% and sensible heat ratio within 5.7%. The model was used to investigate the effect of water circuitory on cooling coil performance.

Performance Analysis of a Vapor Compression Cycle Driven by Organic Rankine Cycle (유기 랭킨 사이클로 구동되는 증기압축 냉동사이클의 성능 해석)

  • Kim, Kyoung Hoon;Jin, Jaeyoung;Ko, Hyungjong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.521-529
    • /
    • 2012
  • Since the energy demand for refrigeration and air-conditioning has greatly increased all over the world, thermally activated refrigeration cycle has attracted much attention. This study carries out a performance analysis of a vapor compression cycle (VCC) driven by organic Rankine cycle (ORC) utilizing low-temperature heat source in the form of sensible heat. The ORC is assumed to produce minimum net work which is required to drive the VCC without generating an excess electricity. Effects of important system parameters such as turbine inlet pressure, condensing temperature, and evaporating temperature on the system variables such as mass flow ratio, net work production, and coefficient of performance (COP) are thoroughly investigated. The effect of choice of working fluid on COP is also considered. Results show that net work production and COP increase with increasing turbine inlet pressure or decreasing condensing temperature. Out of the five kinds of organic fluids considered $C_4H_{10}$ gives a relatively high COP in the range of low turbine inlet pressure.

Comparison of Surface Fluxes Based on Landuse Characteristics Near Gangjeong-Goryeong Weir of the Nakdong River (낙동강 강정고령보에서 관측된 플럭스의 지표면에 따른 특성 비교)

  • Kahng, Keumah;Koo, Hae-Jung;Byon, Jae-Young;Park, Young-San;Jung, Hyun-Sook
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.561-574
    • /
    • 2013
  • This study investigates energy fluxes measured near Gangjeong-Goryeong Weir of the Nakdong River of South Korea for more than a year, from July 2011 to September 2012, in order to analyze the applicability of the data for future impact analyses. Each of the two study sites is located in a rural area, surrounded by agricultural fields, and an urban industrial area. Sensible and latent heat fluxes are analyzed according to the wind direction. In the summertime, when the wind blows from the river, sensible heat tends to decrease and latent heat tends to increase at both sites. This result is considered to be caused by moisture transfer from the river. Bowen ratio, energy balance closure, momentum flux, and stability are analyzed as well. The Bowen ratio of the rural agricultural site turns out higher than that of the urban site regardless of the season. The energy balance closure is higher at the agricultural site compared to the urban area, which is mainly due to exclusion of the storage term calculation at the urban site. The momentum flux is greater at the urban site both in winter and summer. The instability lasts longer during daytime and in the summertime, when there is a strong turbulence. The data from these sites are appropriate to be used in analyzing the impact of river in surrounding areas for future studies.

A Study on the liquid Type Solar Heating System (액체식 태양열난방계통에 관한 연구)

  • Nam, Pyong-Woo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.8 no.4
    • /
    • pp.221-236
    • /
    • 1979
  • The three years Performance of a liquid type solar heating system has been determined for a system which has been determined for a system which has been operating continuously since 1976 in Seoul with no serious maintenance. A flat plate collector is used to transform incident solar radiation into thermal energy. This energy is stored if the form of sensible energy and used as needed to supply the space heating loads. An electric auxiliary heaters are provided to supply energy for space heating load when the energy in the storage tank is depleted. The ratio of useful collected solar heat divided by the total solar radiation on the collector was obtained about 84 per cent. It is also obtained the relation between ratio of solar collector area to the heating area and the ratio of useful collected solar energy to the heating load for the useful design data. A comparison between the measured and simulated results with the solar space heating system is described. Hour by hour simulation is made on unsteady state basis using the system parameters and meteorological data at the experiment site. The result of comparison turned out satisfactory for the solar heating system, though the simulation was formed somewhat higher than by experimental.

  • PDF

Energy Consumption Characteristics and Evaluation of Thermal Insulation Performance in Accordance with Built Year of Apartment Complex (공동주택의 준공연도에 따른 단열성능 평가 및 에너지소비 특성에 관한 연구)

  • Choi, Doo Sung;Lee, Myung Eun;Chun, Hung Chan
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.79-86
    • /
    • 2014
  • Studies have shown that the thermal performance of buildings changes depending on the year of construction completion. It leads to increased energy consumption of buildings and significant financial burden on users. Thus, this study has calculated the thermal insulation performance of 86 apartments quantitatively, using temperature difference ratio and sensible heat flux. Also, energy consumption characteristics depending on the year of construction completion and thermal insulation performance were analyzed by comparatively analyzing the results of insulation performance evaluation and heating costs. The analysis results are as follows. As for thermal insulation performance, it was around 70% lower in the apartments completed before 1985, compared to apartments completed after 2010. As for heating costs, the apartments with the highest heating cost incurred 1.5 higher heating cost than the apartment with the lowest heating cost. In terms of the insulation performance evaluation, the difference was 2.5-fold.

The Relationships between Abdominal Temperature and Some Thermoregulatory Responses in Male Broiler Chickens

  • Zhou, W.T.;Fujita, M.;Ito, T.;Yamamoto, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.6
    • /
    • pp.652-656
    • /
    • 1997
  • This study was conducted to determine the relationships between abdominal temperature (Tabd) and some thermoregulatory responses, such as heat production (HP), heart rate (HR), respiration rate (RR), temperature of external ear tract (Tee), comb surface temperature (Tcs) and shank skin temperature (Tss), for revealing the role of deep body temperature in the thermoregulation of broiler chickens. Tabd was divided into 5 zones of 40-41, 41-42, 42-43, 43-44 and $44-45^{\circ}C$, and maintained for 3 hours in each zone by varying environmental temperature from 11 to $33^{\circ}C$. HP and HR had a greater increase with Tabd above $42.5^{\circ}C$. RR increased markedly with Tabd above $41.5^{\circ}C$, and reached a maximum when Tabd was at $42.5^{\circ}C$, then began to decrease. In addition, HP and HR increased significantly with decrease RR during the decreasing phase of panting. Tcs and Tss changed rapidly with Tabd when Tabd was below $41.5^{\circ}C$, and increased more slowly above $41.5^{\circ}C$. Tee was lower than Tabd, and its increase was less than that of Tabd. These results suggest that changes in thermoregulatory responses are induced by an increase in abdominal temperature. Tabd increases to adjust the ratio of sensible and evaporative heat loss when Tabd is below $42.5^{\circ}C$, while the ability in body temperature regulation gradually disappears when abdominal temperature exceeds $42.5^{\circ}C$ and heat balance can not be maintained.

Numerical Simulations of Diurnal Variations of Air Temperature and Relative Humidity in the Urban Canopy Layer (도시 캐노피 층 기온과 상대습도의 일변화에 관한 수치 모의)

  • Park, Kyeongjoo;Han, Beom-Soon;Jin, Han-Gyul
    • Atmosphere
    • /
    • v.31 no.3
    • /
    • pp.295-309
    • /
    • 2021
  • Diurnal variations of air temperature and relative humidity in the Urban Canopy Layer (UCL) of the Seoul metropolitan area are examined using the Weather Research and Forecasting model coupled with the Seoul National University Urban Canopy Model. The canopy layer air temperature is higher than 2-m air temperature and exhibits a more rapid rise and an earlier peak in the daytime. These result from the multiple reflections of shortwave radiation and longwave radiation trapping due to the urban geometry. Because of the absence of vegetation in the UCL and the higher canopy layer air temperature, the canopy layer relative humidity is lower than 2-m relative humidity. Additional simulations with building height changes are conducted to examine the sensitivities of the canopy layer meteorological variables to the urban canyon aspect ratio. As the aspect ratio increases, net sensible heat flux entering the UCL increases (decreases) in the daytime (nighttime). However, the increase in the volume of the UCL reduces the magnitude of change rate of the canopy layer air temperature. As a result, the canopy layer air temperature generally decreases in the daytime and increases in the nighttime as the aspect ratio increases. The changes in the canopy layer relative humidity due to the aspect ratio change are largely determined by the canopy layer air temperature. As the aspect ratio increases, the canopy layer relative humidity is generally increased in the daytime and decreased in the nighttime, contrary to the canopy layer air temperature.

Validation of Net Radiation Measured from Fluxtower Based on Eddy Covariance Method: Case Study in Seolmacheon and Cheongmicheon Watersheds (에디공분산 방법 기반의 플럭스 타워 순 복사에너지 검증: 설마천, 청미천 유역)

  • Byun, Kyuhyun;Shin, Jiyae;Lee, Yeon-Kil;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.2
    • /
    • pp.111-122
    • /
    • 2013
  • The necessity of clear understanding of water and energy cycles has been attracted recently due to the climate change. The micrometeorological flux tower networks play a role of cornerstone of the hydrological and ecological analyses. Although the eddy covariance techniques used for flux tower have been proven to be applicable for estimation of latent heat flux, the raw data are often underestimated and needs to be corrected. Among several methods, the Bowen ratio is recognized as the most useful method in which the net radiation and other flux data (Ground heat flux, Sensible heat flux) are used and needed to be validated. In this study, in order to validate the net radiation from flux tower in Seolmacheon and Cheongmicheon watersheds, we compare it with two version of calculated net radiation: (1) FAO 56 Daily net radiation proposed by Allen et al. (1998). (2) Instantaneous net radiation proposed by Bastiaanssen (1995). The results showed that the net radiation from the flux data had similar tendency with those calculated based on physical theory. In addition, after it was applied to Bowen ratio method, the corrected latent heat flux was considerably improved with making the energy balance much more closed.

Numerical Simulation on the Effect of the Land Coverage Change on the Urban Heat Budget (토지피복 변화가 도시열수지에 미치는 영향에 관한 수치시뮬레이션)

  • Kim, Sang-Ok;Yeo, In-Ae;Ha, Kyung-Min;Yee, Jurng-Jae;Yoon, Seong-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.176-179
    • /
    • 2009
  • In this study, Urban Climate Simulation was performed using 3-Dimensional Urban Canopy Model. The characteristics of urban thermal environment was analyzed by classifying land coverage and increasing natural land coverage ratio. The results are as follows. The characteristics of the land coverage on urban thermal environment formation can be summarized by the effects like higher temperature on the artificial coverage, and the contrary effects on the natural coverage. When the water coverage 100% was made up, maximum temperature was declined by $5.5^{\circ}C$, humidity by the 6.5g/kg, wind velocity by 0.6m/s, convective sensible heat by $400W/m^2$ and the evaporative latent heat was increased by $370W/m^2$ compared to when artificial coverage 100% was formed. These simulation results need to be constructed as DB which shows urban quantitative thermal characters by the urban physical structure. These can be quantitative base for suggesting combinations of the building and urban planning features at the point of the desirable urban thermal environment as well as analysing urban climate phenomenon.

  • PDF