• Title/Summary/Keyword: Semitransparent thin film solar cells

Search Result 4, Processing Time 0.071 seconds

Optical Transmission Characteristics of Tellurium-based Phase-change Chalcogenide Thin Films (Tellurium계 상변화 칼코겐화물 박막의 광투과 특성)

  • Yoon, Hoi Jin;Bang, Ki Su;Lee, Seung-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.408-413
    • /
    • 2016
  • The dielectric thin films applied to multi-colored semitransparent thin film solar cells have been extensively studied. In this work, we prepared GeSbTe and GeTe chalcogenide thin films using magnetron sputtering, and investigated their optical and phase-change properties to replace the dielectric films. The changes of surface morphology, sheet resistance, and X-ray diffraction of the Te-based chalcogenide films support the fact that the amorphous stability of GeTe films is superior to that of GeSbTe films. While both amorphous GeSbTe and GeTe films thinner than 30 nm have optical transparency between 5% and 60%, GeTe films transmit more visible light than GeSbTe films. It is confirmed by computer simulation that the color of semitransparent silicon thin film solar cells can be adjusted with the addition of GeSbTe or GeTe films. Since it is possible to adjust the contrast of the solar cells by exploiting the phase-change property, the two kinds of chalcogenide films are anticipated to be used as an optical layer in semitransparent solar cells.

Impact of Absorber Thickness on Bifacial Performance Characteristics of Semitransparent Amorphous Silicon Thin-Film Solar Cells (광흡수층 두께에 따른 투광형 비정질 실리콘 박막 태양전지의 양면발전 성능특성)

  • Seo, Yeong Hun;Lee, Ahruem;Shin, Min Jeong;Cho, Ara;Ahn, Seungkyu;Park, Joo Hyung;Yoo, Jinsu;Choi, Bo-Hun;Cho, Jun-Sik
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.97-102
    • /
    • 2019
  • Bifacial and semitransparent hydrogenated amorphous silicon (a-Si:H) thin-film solar cells in p-i-n configuration were prepared with front and rear transparent conducting oxide (TCO) electrodes using plasma-enhanced chemical vapor deposition method. Fluorine-doped tin oxide and tin-doped indium oxide films were used as front and rear TCO contacts, respectively. Film thickness of intrinsic a-Si:H absorber layers were controlled from 150 nm to 450 nm by changing deposition time. The dependence of performance characteristics of solar cells on the front and rear illumination direction were investigated. For front illumination, gradual increase in the short-circuit current density (JSC) from 10.59 mA/㎠ to 14.19 mA/㎠ was obtained, whereas slight decreases from 0.83 V to 0.81 V for the open-circuit voltage (VOC) and from 68.43% to 65.75% for fill factor (FF) were observed. The average optical transmittance in the wavelength region of 380 ~ 780 nm of the solar cells decreased gradually from 22.76% to 15.67% as the absorber thickness was changed from 150 nm to 450 nm. In case of the solar cells under rear illumination condition, the JSC increased from 10.81 to 12.64 mA/㎠ and the FF deceased from 66.63% to 61.85%, while the VOC values were maintained at 0.80 V with increasing the absorber thickness from 150 nm to 450 nm. By optimizing the deposition parameters, a high-quality bifacial and semitransparent a-Si:H solar cell with 350 nm-thick i-a-Si:H absorber layer exhibited the conversion efficiencies of 7.69% for front illumination and 6.40% for rear illumination, and average visible optical transmittance of 17.20%.

Study on Reflectance Improvement of Al-Ti Based Oxide Thin Films for Semitransparent Solar Cell Applications (반투명 태양전지용 Al-Ti계 산화물 박막의 반사율 특성 개선에 관한 연구)

  • Lee, Eun Kyu;Jeong, So Un;Bang, Ki Su;Lee, Seung-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.437-442
    • /
    • 2018
  • This work reports the preparation of Al-Ti based oxide thin films and their optical properties. Although the transmittance of a $TiO_2/Al2O_3$ bilayer structure was as high as 90% at wavelengths of 600 nm or larger, the reflectance of the bilayer reached its minimum at wavelengths of around 360 nm. The transmittance of an 89-nm-thick $TiO_2$ thin film rapidly increased and then decreased at a critical wavelength because of destructive interference. The wavelength corresponding to the reflectance minimum increased after an increase in $TiO_2$ film thickness. The smooth surface morphology of the AlTiO thin film was retained up to a film thickness of 65 nm, and the transmittance of the film was inversely proportional to film thickness, in accordance with the general tendency for optical films. The reflectance of the AlTiO film at visible light wavelengths was lower than that of the $TiO_2$ film, which implies that the AlTiO film is suitable for applications as an optical thin film layer in semitransparent solar cells.

Study on Surface Morphology and Transmittance of Copper Oxide Thin Films Prepared by an Oxidation Reaction (산화반응으로 형성된 구리산화물 박막의 표면형상 및 투과율 특성에 관한 연구)

  • Lee, Eun Kyu;Park, Daesoo;Yoon, Hoi Jin;Lee, Seung-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.10
    • /
    • pp.651-655
    • /
    • 2017
  • This work reports the surface morphology and transmittance of copper oxide thin films for semitransparent solar cell applications. We prepared the oxide specimens by subjecting copper thin films to an oxidation reaction at annealing temperatures ranging between $100^{\circ}C$ and $300^{\circ}C$. The color of the as-deposited specimen was red, but changed to purple at the annealing temperature of $300^{\circ}C$. The surface morphology and transmittance of the specimens were significantly dependent on the annealing temperature and thickness of the copper films. Copper oxide nanoparticles prepared from a 20-nm-thick copper film at an annealing temperature of $300^{\circ}C$ provided a maximum transmittance of 93%. The obtained optical characteristics and surface morphology suggest that copper oxide thin films prepared by an oxidation reaction can be potentially employed as color- and transmittance-adjusting layer in semitransparent thin solar cells.