Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.10.651

Study on Surface Morphology and Transmittance of Copper Oxide Thin Films Prepared by an Oxidation Reaction  

Lee, Eun Kyu (Department of Advanced Materials Engineering, Hanbat National University)
Park, Daesoo (Department of Advanced Materials Engineering, Hanbat National University)
Yoon, Hoi Jin (Department of Advanced Materials Engineering, Hanbat National University)
Lee, Seung-Yun (Department of Advanced Materials Engineering, Hanbat National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.10, 2017 , pp. 651-655 More about this Journal
Abstract
This work reports the surface morphology and transmittance of copper oxide thin films for semitransparent solar cell applications. We prepared the oxide specimens by subjecting copper thin films to an oxidation reaction at annealing temperatures ranging between $100^{\circ}C$ and $300^{\circ}C$. The color of the as-deposited specimen was red, but changed to purple at the annealing temperature of $300^{\circ}C$. The surface morphology and transmittance of the specimens were significantly dependent on the annealing temperature and thickness of the copper films. Copper oxide nanoparticles prepared from a 20-nm-thick copper film at an annealing temperature of $300^{\circ}C$ provided a maximum transmittance of 93%. The obtained optical characteristics and surface morphology suggest that copper oxide thin films prepared by an oxidation reaction can be potentially employed as color- and transmittance-adjusting layer in semitransparent thin solar cells.
Keywords
Copper; Oxide; Surface morphology; Transmittance; Color; Solar cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Virtuani and D. Strepparava, Sol. Energy, 146, 113 (2017). [DOI: https://doi.org/10.1016/j.solener.2017.02.035]   DOI
2 R. N. Puspitasari, H. A. Budiarti, A. M. Hatta, Sekartedjo, and D. D. Risanti, Procedia Eng., 170, 93 (2017). [DOI: https://doi.org/10.1016/j.proeng.2017.03.018]   DOI
3 S. Y. Lee, K. S. Bang, and J. W. Lim, J. Electron. Mater., 43, 3204 (2014). [DOI: https://doi.org/10.1007/s11664-014-3286-z]   DOI
4 R. K. Li, H. To, G. Andonian, J. Feng, A. Polyakov, C. M. Scoby, K. Thompson, W. Wan, H. A. Padmore, and P. Musumeci, Phys. Rev. Lett., 110, 074801 (2013). [DOI: https://doi.org/10.1103/PhysRevLett.110.074801]   DOI
5 H. J. Yoon, K. S. Bang, J. W. Lim, and S. Y. Lee, J. Mater. Sci.: Mater. Electron., 27, 11358 (2016). [DOI: https://doi.org/10.1007/s10854-016-5260-4]   DOI
6 S. H. Lee, S. J. Yun, M. Shin, and J. W. Lim, Sol. Energy Mater. Sol. Cells, 117, 519 (2013). [DOI: https://doi.org/10.1016/j.solmat.2013.07.029]   DOI
7 S. K. Lee, H. C. Hsu, and W. H. Tuan, Mater. Res., 19, 51 (2016). [DOI: http://dx.doi.org/10.1590/1980-5373-MR-2015-0139]   DOI
8 M. Lenglet, J. M. Machefert, J. M. Claude, B. Lefez, J. Lopitaux, and A. D'Huysser, Surf. Interface. Anal., 16, 289 (1990). [DOI: http://dx.doi.org/10.1002/sia.740160160]   DOI
9 H. A. Macleod, Thin-Film Optical Filters, 3rd Edition (CRC Press, Bristol and Philadelphia, 2001) p. 6.
10 S. Y. Lee, S. H. Choi, and C. O. Park, Thin Solid Films, 359, 261 (2000). [DOI: https://doi.org/10.1016/S0040-6090(99)00758-0]   DOI
11 D. Amram, L. Klinger, N. Gazit, H. Gluska, and E. Rabkin, Acta Mater., 69, 386 (2014). [DOI: https://doi.org/10.1016/j.actamat.2014.02.008]   DOI
12 S. Banerjee and D. Chakravorty, Europhys. Lett., 52, 468 (2000). [DOI: https://doi.org/10.1209/epl/i2000-00461-5]   DOI