• 제목/요약/키워드: Semiconductor-sensitized solar cells

검색결과 37건 처리시간 0.022초

물리 기반의 염료 감응형 태양전지 등가회로 모델링 및 성능 분석 (Physical-based Dye-sensitized Solar Cell Equivalent Circuit Modeling and Performance Analysis)

  • 이운복;송준혁;최휘준;구본용;이종환
    • 반도체디스플레이기술학회지
    • /
    • 제22권3호
    • /
    • pp.67-72
    • /
    • 2023
  • In this paper, a dye-sensitized solar cell (DSSC), one of the representative third-generation solar cells with eco-friendly materials and processes compared to other solar cells, was modeled using MATLAB/Simulink. The simulation was conducted by designating values of series resistance, parallel resistance, light absorption coefficient, and thin film electrode thickness, which are directly related to the efficiency of dye-sensitized solar cells, as arbitrary experimental values. In order to analyze the performance of dye-sensitized solar cells, the optimal value among each parameter experimental value related to efficiency was found using formulas for fill factor (FF) and conversion efficiency.

  • PDF

Influence of Nanoporous Oxide Substrate on the Performance of Photoelectrode in Semiconductor-Sensitized Solar Cells

  • Bang, Jin Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권12호
    • /
    • pp.4063-4068
    • /
    • 2012
  • Oxide substrates in semiconductor-sensitized solar cells (SSSCs) have a great impact on their performance. $TiO_2$ has long been utilized as an oxide substrate, and other alternatives such as ZnO and $SnO_2$ have also been explored due to their superior physical properties over $TiO_2$. In the development of high-performance SSSCs, it is of significant importance to understand the effect of oxides on the electron injection and charge recombination as these two are major factors in dictating solar cell performance. In addition, elucidating the relationship between these two critical processes and solar cell performance in each oxide is critical in building up the basic foundation of SSSCs. In this study, ultrafast pump-probe laser spectroscopy and open-circuit decay analysis were conducted to examine the characteristics of three representative oxides ($TiO_2$, ZnO, and $SnO_2$) in terms of electron injection kinetics and charge recombination, and the implication of results is discussed.

염료감응 태양전지의 전기화학적 접근을 통한 해석 (Electrochemical Approaches to Dye-Sensitized Solar Cells)

  • 조임현;임정민;남희진;전용석
    • 전기화학회지
    • /
    • 제12권4호
    • /
    • pp.301-310
    • /
    • 2009
  • 본 논문에서는 현재 많이 연구되고 있는 염료감응 태양전지에 대해 전기화학적 접근을 통해 설명한다. 특히, 기존 도핑 개념을 적용하는 반도체 태양전지와 다른 점을 비교 설명하고, 이론적으로 어떻게 태양전지가 형성될 수 있는지를 설명한다. 또한 염료감응 태양전지가 탄생되게 된 과정을 고찰해 본다. 이어서, 태양전지에서 많이 사용되는 전기화학적 분석법을 설명하고, 어떻게 적용될 수 있는지 임피던스 분석법을 통해 설명한다. 전기화학에서 많이 사용되는 임피던스와 순환전압전류법을 통해, 염료감응 태양전지를 이루는 주성분인 금속산화물과 염료, 전해질의 에너지준위 분석법에 대해서 간단히 소개한다.

A review of zinc oxide photoanode films for dye-sensitized solar cells based on zinc oxide nanostructures

  • Tyona, M.D.;Osuji, R.U.;Ezema, F.I.
    • Advances in nano research
    • /
    • 제1권1호
    • /
    • pp.43-58
    • /
    • 2013
  • Zinc oxide (ZnO) is a unique semiconductor material that exhibits numerous useful properties for dye-sensitized solar cells (DSSCs) and other applications. Various thin-film growth techniques have been used to produce nanowires, nanorods, nanotubes, nanotips, nanosheets, nanobelts and terapods of ZnO. These unique nanostructures unambiguously demonstrate that ZnO probably has the richest family of nanostructures among all materials, both in structures and in properties. The nanostructures could have novel applications in solar cells, optoelectronics, sensors, transducers and biomedical sciences. This article reviews the various nanostructures of ZnO grown by various techniques and their application in DSSCs. The application of ZnO nanowires, nanorods in DSSCs became outstanding, providing a direct pathway to the anode for photo-generated electrons thereby suppressing carrier recombination. This is a novel characteristic which increases the efficiency of ZnO based dye-sensitized solar cells.

Nb2O5 반도체 산화물을 이용한 염료 감응 태양전지 특성 연구 (A Study on the Characteristics of Dye-Sensitized Solar Cell Using Nb2O5 Semiconductor Oxides)

  • 김해마로;이돈규
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.330-333
    • /
    • 2019
  • 실리콘 태양전지와 비교해 제조비용이 저렴하고 뛰어난 안정성을 가지고 있는 염료 감응 태양전지에 관한 다양한 연구가 지속적으로 이루어지고 있다. 본 연구에서는 $TiO_2$$Nb_2O_5$을 혼합하여 만든 반도체 산화물을 사용하여 염료 감응 태양전지의 특성을 연구하였다. $Nb_2O_5$을 서로 다른 비율로 첨가하여 태양전지를 제작하였고, 이에 따른 표면적, 전기적 특성을 측정하였다. $Nb_2O_5$가 첨가될수록 염료 및 전해질의 접촉 면적이 증가하게 되었고, 이에 따라 염료 감응 태양전지의 단락 전류, 개방전압, 곡선인자 및 변환 효율이 개선됨을 확인하였다.

GZO/ZTO 투명전극을 이용한 DSSC의 광전 변환 효율 특성 (Sputtered ZTO as a blocking layer at conducting glass and $TiO_2$ Interfaces in Dye-Sensitized Solar Cells)

  • 박재호;이경주;송상우;조슬기;문병무
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • Dye-sensitized solar cells(DSSCs) have been recognized as an alternative to the conventional p-n junction solar cells because of their simple fabrication process, low production cost, and transparency. A typical DSSC consists of a transparent conductive oxide (TCO) electrode, a dye-sensitized oxide semiconductor nanoparticle layer, liquid redox electrolyte, and a Pt-counter electrode. In dye-sensitized solar cells, charge recombination processes at interfaces between coducting glass, $TiO_2$, dye, and electrolyte play an important role in limiting the photon-to-electron conversion efficiency. A layer of ZTO thin film less than ~200nm in thickness, as a blocking layer, was deposited by DC magnetron sputtering method directly onto the anode electrode to be isolated from the electrolyte in dye-sensitized solar cells(DSCs). This is to prevent the electrons from back-transferring from the electrode to the electrolyte ($I^-/I_3^-$). The presented DSCs were fabricated with working electrode of Ga-doped ZnO glass coated with blocking ZTO layer, dye-attached nanoporous $TiO_2$ layer, gel electrolyte and counter electrode of Pt-deposited GZO glass. The effects of blocking layer were studied with respect to impedance and conversion efficiency of the cells.

  • PDF

TiO2-Nb2O5 반도체 산화물을 이용한 염료 감응 태양전지 특성개선연구 (A Study on the Characteristics of TiO2-Nb2O5 Semiconductor Oxides Using Dye-Sensitized Solar Cell)

  • 김해마로;이돈규
    • 전기전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.538-542
    • /
    • 2019
  • 광 전환 효율에 관여하는 $TiO_2$와 같은 반도체 산화물은 염료 감응 태양전지(Dye-sensitized solar cell, DSSC)의 주요 요소이며, 효율을 개선하기 위해 서로 다른 반도체 산화물을 혼합하여 Pastes를 제조해 사용하는 연구가 이루어지고 있다. 본 연구에서는 $TiO_2-Nb_2O_5$ 혼합 반도체 산화물을 제조하여 염료 감응 태양전지의 특성을 분석하였다. 혼합 반도체 산화물이 광 전환 효율에 미치는 전기적인 특성을 분석하기 위해서 $Nb_2O_5$을 서로 다른 비율로 첨가하여 태양전지를 제작하였다. 이에 $Nb_2O_5$가 첨가됨에 따라 전해질과의 접촉에 의한 재결합 현상보다 전도성이 겅화되어 태양전지의 단락 전류, 개방전압, 변환 효율 등이 개선되는 것을 확인하였다.

염료감응 태양전지 개발동향 및 전망 (Development Trends and Perspectives of Dye-Sensitized Solar Cells)

  • 강문성;강용수
    • 한국분말재료학회지
    • /
    • 제12권1호
    • /
    • pp.7-16
    • /
    • 2005
  • Dye-sensitized solar cells(DSSCs) have been under investigation for the past decade due to their attractive features such as high energy conversion efficiency and low production costs. The basis for energy conversion in the injection of electrons from a photoexcited stateof a dye sensitizer into the conduction band of the nanocrystalline $TiO_2$ semiconductor upon absorption of light. It is believed that the DSSC is one of the most promising technologies to solve the significant energy problems. In this article, the development trends and perspective of DSSCs were reviewed.

Electrocatalytic Activity of Sulfamic Acid Doped Polyaniline Nanofiber Counter Electrode for Dye Sensitized Solar Cell

  • 조철기;;;김영순;양오봉;신형식
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.385-385
    • /
    • 2009
  • Uniform polyaniline nanofibers (PANI NFs), and chemically doped sulfamic acid(SFA) PANI NFs, synthesized via template free interfacial polymerization process, were used as new counter electrodes materials for the fabrication of the highly-efficient dyesensitized solar cells (DSSCs). The PANI NFs based fabricated DSSCs exhibited a solarto-electricity conversion efficiency of ~ 4.02% while, the SFA doped PANI NFs based DSSC demonstrated ~ 27% improvement in the solar-to-electricity conversion efficiency. The obtained solar-to-electricity conversion efficiency for SFA doped PANI NFs based DSSC was 5.47% under 100mW/$cm^2$(AM1.5). The enhancement in the conversion efficiency was due to the incorporation of SFA into the PANI NFs which resulted to the higher electrocatalytic activity for the $I^{3-}/I^-$ redox reaction.

  • PDF

최적 $TiO_2$ 전극 두께 및 광산란 증가에 의한 염료감응형 태양광전지의 효율 개선 (Improving the Performances of Dye-Sensitized Solar Cell by the Optimal $TiO_2$ Photoelectrode Thickness and Light-Scattering Enhancement)

  • 우증연;권현규;박창용
    • 반도체디스플레이기술학회지
    • /
    • 제13권2호
    • /
    • pp.37-44
    • /
    • 2014
  • In this study, the performance of dye-sensitized solar cells with different thickness of the photelectrode film was simulated by using the electron-diffusion differential model. Through this simulation, the relationships between the thickness of the photoelectrode film and the performances (open-circuit voltage, short-circuit current density, and overall photoelectric-conversion efficiency) of cells were understood and the performances with different thickness of the photoelectrede film were also examined. For considering the refractive index in the liquid electrolyte and exploring the scattering effect of titanium dioxide particles with different sizes using the Mie light-scattering theory, the highest scattering effect of each particles was found out and the optimal size of the titanium dioxide particle was determined for light scattering in the photoelectrode film of dye-sensitized solar cell. Through experiment, the mixed titanium dioxide cell was better than the single titanium dioxide cell and generated a higher overall conversion efficiency because the optimal titanium dioxide particles in the phoelectrode film as light scattering.