• Title/Summary/Keyword: Semiconductor single crystals

Search Result 50, Processing Time 0.029 seconds

Structural, Optical, and Magnetic Properties of Si1-xMnxTe1.5 Single Crystals (Si1-xMnxTe1.5 단결정의 구조적, 광학적, 자기적 특성에 관한 연구)

  • Hwang, Young-Hun;Um, Young-Ho;Cho, Sung-Lae
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.3
    • /
    • pp.178-181
    • /
    • 2006
  • We have investigated the Mn concentration-dependent structural, optical, magnetic properties in IV-VI diluted magnetic semiconductor $Si_{1-x}Mn_xTe_{1.5} $ crystals prepared by the vertical Bridgman technique. X-ray studies showed the single crystalline hexagonal crystal structure. From the optical absorption measurements energy band gap were found to decreases with increasing x and temperature. From the magnetization measurements the samples had ferromagnetic ordering with Curie temperature $T_C$ about 80 K. With increasing Mn concentration, the average magnetic moments per Mn atom determined from the saturated magnetization increased.

Study on $CuInTe_2$ Single Crystals Growth and Characteristics(I) ($CuInTe_2$ 단결정 성장과 특성연구(I))

  • 유상하;홍광준
    • Korean Journal of Crystallography
    • /
    • v.7 no.1
    • /
    • pp.44-56
    • /
    • 1996
  • CuInTe2 synthesised in a horizontal electric furnace was found to be polycrystalline. Single crystals of CuInTe2 were grown with the vertical Bridgman technique. The structure, Hall effect of the crystals were measured in the temperature range 30 to 293K. Both the polycrystals and single crystals of CuInTe2 were tetragonal in structure. The lattice constants of the polycrytals were measured as a=6.168Å and c=12.499Å, with c/a=2.026, these of the single crystals were measured as a=6.186Å and c=12.453Å, with c/a=2.013. The growth plane of the oriented single crystals was confirmed to be a (112) plane from the back-reflection Laue patterns. The Hall effect of the CuInTe2 single crystals was measured with the method of van der Pauw The Hall data of the samples measured at room temperature showed a carrier concentration of 2.14×1023holes/m3, a conductivity of 739.58Ω-1m-1, and a mobility of 2.16×10 -2m 2/V·s for the sample perpendicular to the c-axis. Values of 1.51×1023holes/m3, 717.55Ω-1m-1, and 2.97×10-2 m2/V·s were obtained for the sample parallel to the c-axis. The Hall coefficients for the samples both perpendicular and parallel to the c-axis in the temperature range 30K to 293K were always positive values. Thus the CuInTe2 single crystal was determined to be a p-type semiconductor.

  • PDF

Fabrication of Semiconductor Devices and Its Characteristics for $MgGa_{2-x}In_xSe_4$ Single Crystals ($MgGa_{2-x}In_xSe_4$ 단결정을 이용한 광전반도체소자 제작과 그 특성 연구)

  • 김형곤;김화택
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.1
    • /
    • pp.65-72
    • /
    • 1993
  • MgGa2-xInxSe4 single crystal을 bridgman technique로 성장시켰다. 성장된 단결정은 rhombohedral 구조를 가지고 있었으며, lattice constant는 a=3.950~4.070$\AA$, c=38.89~39.50$\AA$으로 주어졌고, 높은 photoconductivity를 가지고 있었다. 이 단결정의 energy gap은 2.20~1.90eV이었고, photoconductivity spectrum에 peak의 energy는 2.31~2.01eV로 주어졌으며, photoconductivity의 time constant는 0.24~0.34sec로 주어졌다.

  • PDF

Crystal Growth and Characterization of Compound Semiconductor Materials (화합물 반도체 재료의 결정성장과 특성평가)

  • 민석기
    • Korean Journal of Crystallography
    • /
    • v.1 no.2
    • /
    • pp.115-125
    • /
    • 1990
  • We have investigated bulk and hetero-epitaxial growth of GaAs single crystal. Various growth techniques such as HB, HZM, and VGF for high quality bulk GaAs were successfully developed by appling the specially designed DM(direct monitoring) furnace. Al GaAs/GaAs superlattice structure and In(x)Ga(1-x) As/GaAs epilayers were also grown by MOCVD and VPE, respectively. The characterization of GaAs single crystals and epilayers was made by X-ray diffraction, Hall effect, PL, chemical etching and angle lapping technique.

  • PDF

Characteristics of Si Nano-Crystal Memory

  • Kwangseok Han;Kim, Ilgweon;Hyungcheol Shin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.1
    • /
    • pp.40-49
    • /
    • 2001
  • We have developed a repeatable process of forming uniform, small-size and high-density self-assembled Si nano-crystals. The Si nano-crystals were fabricated in a conventional LPCVD (low pressure chemical vapor deposition) reactor at $620^{\circ}c$ for 15 sec. The nano-crystals were spherical shaped with about 4.5 nm in diameter and density of $5{\times}l0^{11}/$\textrm{cm}^2$. More uniform dots were fabricated on nitride film than on oxide film. To take advantage of the above-mentioned characteristics of nitride film while keeping the high interface quality between the tunneling dielectrics and the Si substrate, nitride-oxide tunneling dielectrics is proposed in n-channel device. For the first time, the single electron effect at room temperature, which shows a saturation of threshold voltage in a range of gate voltages with a periodicity of ${\Delta}V_{GS}\;{\approx}\;1.7{\;}V$, corresponding to single and multiple electron storage is reported. The feasibility of p-channel nano-crystal memory with thin oxide in direct tunneling regime is demonstrated. The programming mechanisms of p-channel nano-crystal memory were investigated by charge separation technique. For small gate programming voltage, hole tunneling component from inversion layer is dominant. However, valence band electron tunneling component from the valence band in the nano-crystal becomes dominant for large gate voltage. Finally, the comparison of retention between programmed holes and electrons shows that holes have longer retention time.

  • PDF

Raman Characteristics of (100) β-Gallium Oxide Single Crystal Grown by EFG Method (EFG법을 이용한 (100) β-산화갈륨 단결정 성장 및 라만 특성 연구)

  • Shin, Yun-Ji;Cho, Seong-Ho;Jeong, Woon-Hyeon;Jeong, Seong-Min;Lee, Won-Jae;Bae, Si-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.626-630
    • /
    • 2022
  • A 100 mm × 50 mm-sized (100) gallium oxide (Ga2O3) single crystal ingot was successfully grown by edge-defined film-fed growth (EFG). The preferred orientation and the quality of grown Ga2O3 ingot were compatible with a commercial Ga2O3 substrate by showing strong (100) orientation behaviors and 246 arcsec in X-ray rocking curve. Raman characterization was also performed for both samples; thereby providing various Raman-active characteristics of Ga2O3 crystals. In particular, we observed Ag(5) and Ag(10) peaks of Raman active mode, directly related to the impurity of the grown Ga2O3 crystal. Hence, the comparison of the crystal quality and Raman analysis might be useful for further enhancement of Ga2O3 single crystal quality in the future.

Hall-effect properties of single crystal semiconductor P-GaSe dopes with $Er^{3+}$ (Erbium 도핑된 p-GaSe 단결정의 홀 효과 특성)

  • Lee, Woo-Sun;Oh, Guem-Kon;Chung, Young-Ho;Jung, Chang-Soo;Son, Kyeong-Choon;Kim, Nam-Oh
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.726-728
    • /
    • 1998
  • Optical and electrical properties of GaSe:$Er^{3+}$ single crystals grown by the Bridgeman technique was been investigated by using optical absorption and Hall-effect measurements. The Hall coefficients were measured by using a high impedance electrometer in the temperature range from 360K to 150K. The temperature dependence of hole concentration shows the characteristic of a partially compensated p-type semiconductor. carrier density($N_H$) of GaSe doped with Erbium was measured about $3.25{\times}10^{16}\;[cm^{-3}}$ at temperature 300K, which was high than undoped specimen. Photon energy gap ($E_{gd}$) was measured about 1.7geV.

  • PDF

Hall-effect Properties of Single Crystal Semiconductor p-GaSe Dopes with $Er^{3+}$ (Erbium 도핑된 p-GaSe 단결성의 홀 효과 특성)

  • 이우선;김남오;손경춘
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • Optical and electrical properties of GaSe:Er\ulcorner single crystals grown by the Bridgenman technique have been investigated by using optical absorption and h\Hall-effect measurement system. The Hall coefficients were mea-sured by using a high impedance electrometer in the temperature range from 360K to 150K. The temperature dependence of hole concentration show the characteristic of a partially compensated p-type semiconductor. Carrier density(N\ulcorner) of GaSe doped with Erbium was measured about 3.25$\times$10\ulcorner [cm\ulcorner] at temperature 300K, which was higher than undoped specimen. Photon energy gap (E\ulcorner) of GaSe:Er\ulcorner specimen was measured about 1.79eV.

  • PDF

A Study on the Characterization on Some Semiconuctor Materials by Neutron Activation Analysis. Characterization of Semiconductor Silicon

  • Lee Chul;Kwun Oh Cheun;Kim Ho Kun;Lee Jong Du;Chung Koo Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.30-32
    • /
    • 1989
  • Traces of nine elements, gold, arsenic, cobalt, chromium, copper, europium, hafnium, sodium and antimony in commercially available silicon crystals were determined by the instrumental neutron activation analysis using the single comparator method. The values of the concentrations of these elements in both single and polycrystals were found to decrease significantly to a low limiting level by simply washing and etching surface contaminants having been introduced during various steps of sample preparation and irradiation. However, the chromium levels in polycrystals were not easily decreased, these depending upon the cutting tools employed. The Sb-doped content in each semiconductor has been compared with the associated quantities such as the concentration and the conductivity range given by the sample donor. Uncertainty in the sodium analysis due to the fission neutron reaction by silicon itself was discussed.

Photoluminescence of Multinary-compound Semiconductor $ZnGaInS_4:Er^{3+}$ Single Crystals (다원화합물 반도체 $ZnGaInS_4:Er^{3+}$ 단결정의 광발광 특성)

  • Kim, Nam-Oh;Kim, Hyung-Gon;Bang, Tae-Hwan;Hyun, Seung-Cheol;Kim, Duck-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.35-39
    • /
    • 2000
  • $ZnIn_2S_4$ and $ZnGaInS_4:Er^{3+}$ single crystals crystallized in the rhombohedral (hexagonal) space group $C_{3v}^5(R3m)$, with lattice constants $a=3.852{\AA},\;c=37.215{\AA}$ for $ZnIn_2S_4$, and $a=3.823{\AA}$, and $c=35.975{\AA}$ for $ZnIn_2S_4:Er^{3+}$. The optical absorption measured near the fundamental band edge showed that the optical energy band structure of there compounds had a direct and indirect band gap, the direct and indirect energy gaps are found to be 2.778 and 2.682 eV for $ZnIn_2S_4$, and 2.725 and 2.651eV for $ZnIn_2S_4:Er^{3+}$ at 293 K. The photoluminescence spectra of $ZnIn_2S_4:Er^{3+}$ measured in the wavelength ranges of $500nm{\sim}900nm$ at 10 K. Eight sharp emission peaks due to $Er^{3+}$ ion are observed in the regions of $549.5{\sim}550.0nm,\;661.3{\sim}676.5nm$, and $811.1{\sim}834.1nm$, and $1528.2{\sim}1556.0nm$ in $CdGaInS_4:Er^{3+}$ single crystal. These PL peaks were attributed to the radiative transitions between the split electron energy levels of the $Er^{3+}$ ions occupied at $C_{2v}$, symmetry of the $ZnIn_2S_4$ single crystals host lattice.

  • PDF