• Title/Summary/Keyword: Semiconductor equipment

Search Result 865, Processing Time 0.052 seconds

A Study on the Compensation of Thermal Errors for Phase Measuring Profilometry (PMP 형상 측정법의 열 변위 보정에 관한 연구)

  • Kim, Gi-Seung;Park, Yoon-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.598-603
    • /
    • 2019
  • Three-dimensional shape measurement technology is used in various industries. Among them, optical three-dimensional shape measurement techniques based on the optical trigonometry are mainly used in the field of semiconductor product inspection, where large quantities of three-dimensional shape measurements are made daily in factories and fine measurements are also required. The light source and the drive circuit, which are components of three-dimensional measurement equipment based on this optical trigonometry, produce heat generated by prolonged operation, and may be exposed to conditions where the ambient temperature is not constant, resulting in temperature-induced measurement errors. In this study, the compensation method of the Thermal Errors for Phase Measuring Profilometry is proposed. Three-Dimensional Shape Measurement Equipment based on Phase Measuring Profilometry is implemented to measure the height of an object and ambient temperature for 10 Hours, and a regression line was obtained line by making simple linear regression using measured temperature and height values. This regression line was used to correct the error of the height measurement according to the temperature, and thermal error was from 139.88 um(Micrometer) to 13.12 um.

An Empirical Study on the Success Factors of Korean Venture Firms: The Suggestion of the Integrated Model Utilizing Secondary Data (한국 벤처기업의 성공요인에 관한 실증적 연구: 2차 자료를 활용한 통합적 모형의 제시)

  • Koh, InKon
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.13 no.2
    • /
    • pp.1-13
    • /
    • 2018
  • This study examines the relationship between the organizational general characteristics (industry, size, location, development stage, and company age) and success factors of Korean venture firms using secondary data. Among the industries with the highest sales figures in 2016 are food / fiber / (non) metals, and the smallest category was software development. The sectors with the highest net profit were computer / semiconductor / electronic components, and the smallest category was telecommunication equipment / broadcasting equipment. The industries with the largest sales growth rate are IT / broadcasting services and software development. The industries with the highest net profit margin of sales are energy / medical / precision, and the smallest is telecommunication equipment / broadcasting equipment. In terms of the number of employees, venture firms with more than 100 employees have the largest sales and net profit, with employees between 1 and 9 have the smallest. However, these results are predictable. In general, the number of employees is highly correlated with sales and net profit. Rather, the sales growth rate and the net profit margin of sales may be meaningful. In particular, with employees between 50 ~ 99, the growth rate of sales and the net profit margin of sales were high. In terms of location, Seoul / Incheon / Gyeonggi were the regions with the highest sales and Daejeon / Sejong / Chungcheong / Gangwon were the least regions. Gwangju / Jeolla / Jeju and Seoul / Incheon / Gyeonggi were almost similar in the areas with the largest net profit. However, Daejeon / Sejong / Chungcheong / Gangwon had the lowest net profit. Unusually, the areas with the highest sales growth rate and the highest net profit margin of sales were Gwangju / Jeolla / Jeju, and the smallest areas were Busan / Jeonnam / Ulsan In the relationship between the stage of development and the performance of the company, the sales of maturity and decline stages were the highest and establishing stage was the lowest. Net profit was also the highest in mature stage and the smallest in establishing stage. The sales growth rate shows a typical pattern in the order of establishing stage, early growth stage, high growth stage, maturity stage, and decline stage. In terms of business performance, sales and net profit are the highest with 21 years or more of company age, and the smallest is less than 3 years. In addition, the sales growth rate was the highest in three years or less, and the net profit margin of sales was the highest in 4 to 10 years. This study can present lots of useful implications by suggesting integrated research model and examining the success factors of Korean venture firms and presenting the application methods of secondary data in analyzing the current status of venture industry in Korea.

Crystal growth of ring-shaped SiC polycrystal via physical vapor transport method (PVT 방법에 의한 링 모양의 SiC 다결정 성장)

  • Park, Jin-Yong;Kim, Jeong-Hui;Kim, Woo-Yeon;Park, Mi-Seon;Jang, Yeon-Suk;Jung, Eun-Jin;Kang, Jin-Ki;Lee, Won-Jae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.163-167
    • /
    • 2020
  • Ring-shaped SiC (Silicon carbide) polycrystals used as an inner material in semiconductor etching equipment was manufactured using the PVT (Physical Vapor Transport) method. A graphite cylinder structure was placed inside the graphite crucible to grow a ring-shaped SiC polycrystal by the PVT method. The crystal polytype of grown crystal were analyzed using a Raman and an UVF (Ultra Violet Fluorescence) analysis. And the microstructure and components of SiC crystal were identified by a SEM (Scanning Electron Microscope) and EDS (Energy Disruptive Spectroscopy) analyses. The grain size and growth rate of SiC polycrystals fabricated by this method was varied with temperature variation in the initial stage of growth process.

Influence of Manufacturing Conditions on the Reflectance and Life Time of the Gold Protected IR Mirror (금 증착 적외선 반사판의 반사율 및 수명에 미치는 제조공정 변수의 영향)

  • Choi, Yong-Sun;Lee, Young-Ki;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.201-207
    • /
    • 2018
  • Infrared(IR) heating has many advantages, such as energy efficiency, reduced heating time, cleanliness, equipment compactness, high drying rate and easy automation. These features of IR heating provide widely industrial applications, such as surface heat treatment in semiconductor fabrication, thermoforming of polymers, drying and disinfection of food products, heating to metal forging, and drying of wet materials. In this study, the characteristics of a protected gold mirror were examined by spectrophotometer and the lifetime of the coating layers were evaluated by a cross-cutting method and salt spray test. The effects of manufacturing conditions on the protected gold mirror were seen and remedies for these effects were noted in order to improve the properties of the protected gold mirror in the drying process. The reflectance and lifetime of the protected gold mirror was influenced by manufacturing conditions, such as surface roughness and forming conditions of the anti-oxide layer, the adhesion layer, the reflecting layer and the protection layer. The results of this study showed that the protected gold mirror manufactured using a buffing method for pre-treatment resulted in the most effective reflectance. In addition, $Al_2O_3$ coating on an Al substrate as an anti-oxide layer was more effective than the anodizing process in the test of reflectance. Furthermore, the protected gold mirror manufactured by layers forming of various materials resulted in the most effective reflectance and lifetime when coated with $Al_2O_3$ as the anti-oxide layer, coated Cr as the adhesion layer, and coated $MgF_2$ as the protection layer.

Rotordynamic Analysis of a Dry Vacuum Pump Rotor-Bearing System for High-Speed Operation (고속 운전용 건식진공펌프 로터-베어링 시스템의 회전체동역학 해석)

  • Lee, An-Sung;Lee, Dong-Hwan;Kim, Byung-Ok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.523-530
    • /
    • 2006
  • A rotordynamic analysis was performed with a dry vacuum pump, which is a major equipment in modern semiconductor and LCD manufacturing processes. The system is composed of screw rotors, lobes picking air, helical gears, driving motor, and support rolling element hearings of rotors and motor. The driving motor-screw rotor system has a rated speed of 6,300rpm, and was modeled utilizing a rotordynamic FE method for analysis, which was verified through the results of its 3-D finite element model. As loadings on the bearings due to the gear action were significant in the system considered, each resultant bearing load was calculated determinately and indeterminately by considering the generalized forces of the gear action as veil as the rotor itself. Each resultant hearing loading was used in calculating each stiffness of rolling element bearings. Design goals are to achieve wide separation margins of critical speeds and favorable unbalance responses of the rotor in the operating range. Then, a complex rotordynamic analysis of the system was carried out to evaluate its forward synchronous critical speeds, whirl natural frequencies and mode shapes, and unbalance responses under various unbalance locations. Results show that the entire system is well designed in the operating range. In addition, the procedure of rotordynamic analysis for dry vacuum pump rotor-bearing system was proposed and established.

  • PDF

Design of Micro-structured Small Scale Energy Harvesting System for Pervasive Computing Applications (편재형 컴퓨팅을 위한 미세구조 에너지 하베스팅 시스템의 구조 설계)

  • Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.918-924
    • /
    • 2009
  • In this paper, we designed micro-structured electromagnetic transducers for energy harvesting and verified the performance of proposed transducers using finite element analysis software, COMSOL Multiphysics. To achieve higher energy transduce efficiency, around the magnetic core material, three-dimensional micro-coil structures with high number of turns are fabricated using semiconductor fabrication process technologies. To find relations between device size and energy transduce efficiency, generated electrical power values of seven different sizes of transducers ($3{\times}3\;mm^2$, $6{\times}6\;mm^2$, $9{\times}9\;mm^2$, $12{\times}12\;mm^2$, $15{\times}15\;mm^2$, $18{\times}18\;mm^2$, and $21{\times}21\;mm^2$) are analyzed on various magnetic flux density environment ranging from 0.84 T to 1.54 T and it showed that size of $15{\times}15\;mm^2$ device can generate $991.5\;{\mu}W$ at the 8 Hz of environmental kinetic energy. Compare to other electromagnetic energy harvesters, proposed system showed competitive performance in terms of power generation, operation bandwidth and size. Since proposed system can generate electric power at very low frequency of kinetic energy from typical life environment including walking and body movement, it is expected that proposed system can be effectively applied to various pervasive computing applications including power source of embodied medical equipment, power source of RFID sensors and etc. as an secondary power sources.

Space Qualification of MMICs for COMS Communications Transponder (통신해양기상위성 통신 중계기용 MMIC의 우주인증)

  • Jang, Dong-Pil;Yeom, In-Bok;O, Seung-Yeop
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.56-62
    • /
    • 2006
  • This paper describes the MMIC product qualification of the Ka band satellite transponder for the COMS(Communication, Ocean and Meteorological Satellite). Ka-band active equipment for the COMS communications transponder are being developed by using 12 kinds of MMICs which include low noise amplifiers, medium power amplifiers, frequency mixers, frequency multipliers, RF switch, and HEMT attenuator MMIC, Those MMICs had been fabricated at the MMIC production foundry of northrop Grumman Space Technology (Velocium) which is qualified for space application, and experienced in various space programs during past decades. For the MMIC product qualification, Visual inspection and SEM inspection had been performed, and burn-in test for 240 hours and accelerated life-test for 1000 hours had been done on test fixtures of individual MMIC products at $125^{\circ}C$. Additionally, infrared temperature scanning and finite element simulation were performed to analyze and confirm the channel temperature of semiconductor devices on several representatives of those MMIC products that os one of the most important factors in performance degradation and life reduction.

  • PDF

Cleanliness Test by Spray-Type Cleaning Agent for Electronic and Semiconductor Equipment (전자·반도체용 스프레이 분사형 세정제에 대한 청정도 평가)

  • Heo, Hyo Jung;Row, Kyung Ho
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.688-694
    • /
    • 2009
  • A spray-type cleaning agent in utilizing dust-remover on PCB was chosen to study the cleanliness test and efficiency. In order to choose alternative environmental-friendly cleaning agents, it is important that the systematic selection procedures should be introduced and applied through the evaluation of their cleaning ability, environmental characteristics, and economical factors, and that the objective and effective evaluation methods of cleanliness should be established for the industry. A novel cleaning evaluation method with scanning electron microscopy/energy-dispersive X-ray analysis of surface observation evaluation method and an infra-red thermography camera(THERMOVISION A20 model) was studied in this work. The sound card(CT-2770 model) cut by $2{\times}2cm$ size was used as a part, and before and after the spray cleaning, the cleanliness was observed by the image analyzer of SEM and further the removal efficiency of dust was quantitatively evaluated by the component analysis of EDX. For the parts of P4TE model motherboard and IPC-A-36 PCB plate, before and after the spray cleaning, temperature differences were measured and compared at room temperature and 50 oven temperature by an infra-red thermography camera in the contaminants of dust and iron powder.

A Study on Private Security in the 1980s (1980년대의 민간경비연구)

  • Ahn, Hwang Kwon
    • Convergence Security Journal
    • /
    • v.16 no.6_2
    • /
    • pp.43-51
    • /
    • 2016
  • In the 1980s, private security was established in the framework of institutional framework with the Security Industry Act which was enacted in 1976. The agents who brought in the development of the private sector in 1980 enjoyed a boom in the global economy, affected by its high-flying dollar value, low international interest rate, low oil prices, and the blooming economy. In addition, the semiconductor, computers and communications equipment that was promoted in accordance with the e-Literacy plan were raised. Following the economic development of various events such as Seoul International Trade Fair, "86 Asian Games," and "88 Seoul Olympic Games," private security expenses were enhanced by increasing awareness of civilian expenses. Also, in the 1980s, Korean investment in foreign companies, including Japan's Secom, or Korean technology, brought many changes to the private security. Meanwhile, the cost of security, which has been centered around human expenses, has brought about the era of mechanized spending, or machine security expenses. The purpose of this study is to systematically analyze the social environment surrounding the private security in the 1980s and systematically analyze the important factors that contribute to private security.

A Rotordynamic Analysis of Dry Vacuum Pump Rotor-Bearing System for High-Speed Operation (고속 운전용 건식진공펌프 로터-베어링 시스템의 전체동역학 해석)

  • Kim, Byung-Ok;Lee, An-Sung;Noh, Myung-Keun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.3 s.42
    • /
    • pp.47-54
    • /
    • 2007
  • A rotordynamic analysis was performed with a dry vacuum pump, which is a major equipment in modem semiconductor and LCD manufacturing processes. The system is composed of screw rotors, lobes picking air, helical gears, driving motor, and support rolling element bearings of rotors and motor. The driving motor-screw rotor system has a rated speed of 6,300rpm, and was modeled utilizing a rotordynamic FE method for analysis, which was verified through the results of its 3-D finite element model. As loadings on the bearings due to the gear action were significant in the system considered, each resultant bearing load was calculated determinately and indeterminately by considering the generalized forces of the gear action as well as the rotor itself. Each resultant bearing loading was used in calculating each stiffness of rolling element bearings. Design goals are to achieve wide separation margins of critical speeds and favorable unbalance responses of the rotor in the operating range. Then, a complex rotordynamic analysis of the system was carried out to evaluate its forward synchronous critical speeds, whirl natural frequencies and mode shapes, and unbalance responses under various unbalance locations. Results show that the entire system is well designed in the operating range. In addition, the procedure of rotordynamic analysis for dry vacuum pump rotor-bearing system was proposed and established.