• Title/Summary/Keyword: Semiconductor Images

Search Result 229, Processing Time 0.028 seconds

Wear Characteristics for Rod and Nozzle of Jetting Dispenser Driven by Dual Piezoelectric Actuators Under High Frequency with Phosphor-containing Liquid (형광체 함유 용액 고속 토출 조건에서의 듀얼 압전 디스펜서 공이와 노즐의 마모 특성 평가)

  • Ha, Myeong-Woo;Lee, Kwang-Hee;An, Jun-Wook;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.52-58
    • /
    • 2017
  • An ultra-high precise ejection process is essential in a dispensing system for fabricating various precision parts such as a semiconductor, LED, and camera module. The size of such parts has been decreasing, which implies that a precise ejecting technique is required. A phosphor-containing liquid is ejected via a dispenser using dual piezoelectric actuators that are used for generating a high-speed dispensing mechanism. The rod and nozzle continuously contact in high speed to eject the liquid. However, the high-strength filler or phosphor in the liquid causes wear on the surfaces of the rod and nozzle during the dispensing process. As a result, the ejection reliability decreases as the wear on the surfaces increases. Therefore, it is necessary to estimate the wear characteristics of the rod and nozzle via an experiment and FE analysis. Reliability rests up to 1,000 cycles are conducted under relatively severe conditions. The flow rate and surfaces roughness of the rod and nozzle are measured in each ejection cycle. The surface images and wear volume are obtained before and after the tests and the ejection reliability is confirmed by measuring the flow rate of the liquid. The experimental results show that the ejection reliability is maintained up to 1,000k cycles; these results are validated by the simulation results.

$Cu(In_{1-x}Ga_x)Se_2$ Thin Film Fabrication by Powder Process

  • Song, Bong-Geun;Cho, So-Hye;Jung, Jae-Hee;Bae, Gwi-Nam;Park, Hyung-Ho;Park, Jong-Ku
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.92-92
    • /
    • 2012
  • Chalcopyrite-type Cu(In,Ga)Se2 (CIGS) is one of the most attractive compound semiconductor materials for thin film solar cells. Among various approaches to prepare the CIGS thin film, the powder process offers an extremely simple and materials-efficient method. Here, we present the mechano-chemical synthesis of CIGS compound powders and their use as an ink material for screen-printing. During the synthesis process, milling time and speed were varied in the range of 10~600 min and 100~300 rpm, respectively. Both phase evolution and powder characteristics were carefully monitored by X-ray diffraction (XRD) method, scanning electron microscope (SEM) observation, and particle size analysis by scanning mobility particle spectrometer (SMPS) and aerodynamic particle sizer (APS). We found the optimal milling condition as 200 rpm for 120 min but also found that a monolithic phase of CIGS powders without severe particle aggregation was difficult to be obtained by the mechano-chemical milling alone. Therefore, the optimized milling condition was combined with an adequate heat-treatment (300oC for 60 min) to provide the monolithic CIGS powder of a single phase with affordable particle characteristics for the preparation of CIGS thin film. The powder was used to prepare an ink for screen printing with which dense CIGS thin films were fabricated under the controlled selenization. The morphology and electrical properties of the thin films were analyzed by SEM images and hall measurement, respectively.

  • PDF

Implementation of a Face Authentication Embedded System Using High-dimensional Local Binary Pattern Descriptor and Joint Bayesian Algorithm (고차원 국부이진패턴과 결합베이시안 알고리즘을 이용한 얼굴인증 임베디드 시스템 구현)

  • Kim, Dongju;Lee, Seungik;Kang, Seog Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1674-1680
    • /
    • 2017
  • In this paper, an embedded system for face authentication, which exploits high-dimensional local binary pattern (LBP) descriptor and joint Bayesian algorithm, is proposed. We also present a feasible embedded system for the proposed algorithm implemented with a Raspberry Pi 3 model B. Computer simulation for performance evaluation of the presented face authentication algorithm is carried out using a face database of 500 persons. The face data of a person consist of 2 images, one for training and the other for test. As performance measures, we exploit score distribution and face authentication time with respect to the dimensions of principal component analysis (PCA). As a result, it is confirmed that an embedded system having a good face authentication performance can be implemented with a relatively low cost under an optimized embedded environment.

A Fingerprint Identification System using Large Database (대용량 DB를 사용한 지문인식 시스템)

  • Cha, Jeong-Hee;Seo, Jeong-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.203-211
    • /
    • 2005
  • In this paper, we propose a new automatic fingerprint identification system that identifies individuals in large databases. The algorithm consists of three steps; preprocessing, classification, and matching, in the classification. we present a new classification technique based on the statistical approach for directional image distribution. In matching, we also describe improved minutiae candidate pair extraction algorithm that is faster and more accurate than existing algorithm. In matching stage, we extract fingerprint minutiaes from its thinned image for accuracy, and introduce matching process using minutiae linking information. Introduction of linking information into the minutiae matching process is a simple but accurate way, which solves the problem of reference minutiae pair selection in comparison stage of two fingerprints quickly. This algorithm is invariant to translation and rotation of fingerprint. The proposed system was tested on 1000 fingerprint images from the semiconductor chip style scanner. Experimental results reveal false acceptance rate is decreased and genuine acceptance rate is increased than existing method.

  • PDF

Effect of Thin-Film Thickness on Electrical Performance of Indium-Zinc-Oxide Transistors Fabricated by Solution Process (용액 공정을 이용한 IZO 트랜지스터의 전기적 성능에 대한 박막 두께의 영향)

  • Kim, Han-Sang;Kyung, Dong-Gu;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.469-473
    • /
    • 2017
  • We investigated the effect of different thin-film thicknesses (25, 30, and 40 nm) on the electrical performance of solution-processed indium-zinc-oxide (IZO) thin-film transistors (TFTs). The structural properties of the IZO thin films were investigated by atomic force microscopy (AFM). AFM images revealed that the IZO thin films with thicknesses of 25 and 40 nm exhibit an uneven distribution of grains, which deforms the thin film and degrades the performance of the IZO TFT. Further, the IZO thin film with a thickness of 30 nm exhibits a homogeneous and smooth surface with a low RMS roughness of 1.88 nm. The IZO TFTs with the 30-nm-thick IZO film exhibit excellent results, with a field-effect mobility of $3.0({\pm}0.2)cm^2/Vs$, high Ion/Ioff ratio of $1.1{\times}10^7$, threshold voltage of $0.4({\pm}0.1)V$, and subthreshold swing of $0.7({\pm}0.01)V/dec$. The optimization of oxide semiconductor thickness through analysis of the surface morphologies can thus contribute to the development of oxide TFT manufacturing technology.

Absorption analysis of streptavidin-biotin complexes using AFM (AFM을 이용한 스트렙타비딘-바이오틴 단백질 복합체의 흡착 분석)

  • Park, Jee-Eun;Kim, Dong-Sun;Choi, Ho-Jin;Shin, Jang-Kyoo;Kim, Pan-Kyeom;Lim, Geun-Bae
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.237-244
    • /
    • 2006
  • Atomic force microscope (AFM) has become a common tool for the structural and physical studies of biological macromolecules, mainly because it provides the ability to perform experiments with samples in a buffer solution. In this study, structure of proteins and nucleic acids has been studied in their physiological environment that allows native intermolecular complexes to be formed. Cr and Au were deposited on p-Si (100) substrate by thermal evaporation method in sequence with the thickness of $200{\AA}$ and $500{\AA}$, respectively, since Au is adequate for immobilizing biomolecules by forming a self-assembled monolayer (SAM) with semiconductor-based biosensors. The SAM, streptavidin and biotin interacted each other with their specific binding energy and their adsorption was analyzed using the Bio-AFM both in a solution and under air environment. A silicon nitride tip was used as a contact tip of Bio-AFM measurement in a solution and an antimony doped silicon tip as a tapping tip under air environment. Actual morphology could also be obtained by 3-dimensional AFM images. The length and agglomerate size of biomolecules was measured in stages. Furthermore, $R_{a}$ (average of surface roughness) and $R_{ms}$ (mean square of surface roughness) and surface density for the adsorbed surface were also calculated from the AFM image.

Fingerprint Recognition using Linking Information of Minutiae (특징점의 연결정보를 이용한 지문인식)

  • Cha, Heong-Hee;Jang, Seok-Woo;Kim, Gye-Young;Choi, Hyung-Il
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.815-822
    • /
    • 2003
  • Fingerprint image enhancement and minutiae matching are two key steps in an automatic fingerprint identification system. In this paper, we propose a fingerprint recognition technique by using minutiae linking information. Recognition process have three steps ; preprocessing, minutiae extraction, matching step based on minutiae pairing. After extracting minutiae of a fingerprint from its thinned image for accuracy, we introduce matching process using minutiae linking information. Introduction of linking information into the minutiae matching process is a simple but accurate way, which solves the problem of reference minutiae pair selection with low cost in comparison stage of two fingerprints. This algorithm is invariable to translation and rotation of fingerprint. The matching algorithm was tested on 500 images from the semiconductor chip style scanner, experimental result revealed the false acceptance rate is decreased and genuine acceptance rate is increased than existing method.

Cost Effective Mobility Anchor Point Selection Scheme for F-HMIPv6 Networks (F-HMIPv6 환경에서의 비용 효율적인 MAP 선택 기법)

  • Roh Myoung-Hwa;Jeong Choong-Kyo
    • KSCI Review
    • /
    • v.14 no.1
    • /
    • pp.265-271
    • /
    • 2006
  • In this paper, we propose a new automatic fingerprint identification system that identifies individuals in large databases. The algorithm consists of three steps: preprocessing, classification, and matching, in the classification, we present a new classification technique based on the statistical approach for directional image distribution. In matching, we also describe improved minutiae candidate pair extraction algorithm that is faster and more accurate than existing algorithm. In matching stage, we extract fingerprint minutiaes from its thinned image for accuracy, and introduce matching process using minutiae linking information. Introduction of linking information into the minutiae matching process is a simple but accurate way, which solves the problem of reference minutiae pair selection in comparison stage of two fingerprints quickly. This algorithm is invariant to translation and rotation of fingerprint. The proposed system was tested on 1000 fingerprint images from the semiconductor chip style scanner. Experimental results reveal false acceptance rate is decreased and genuine acceptance rate is increased than existing method.

  • PDF

Analytic simulator and image generator of multiple-scattering Compton camera for prompt gamma ray imaging

  • Kim, Soo Mee
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.383-392
    • /
    • 2018
  • For prompt gamma ray imaging for biomedical applications and environmental radiation monitoring, we propose herein a multiple-scattering Compton camera (MSCC). MSCC consists of three or more semiconductor layers with good energy resolution, and has potential for simultaneous detection and differentiation of multiple radio-isotopes based on the measured energies, as well as three-dimensional (3D) imaging of the radio-isotope distribution. In this study, we developed an analytic simulator and a 3D image generator for a MSCC, including the physical models of the radiation source emission and detection processes that can be utilized for geometry and performance prediction prior to the construction of a real system. The analytic simulator for a MSCC records coincidence detections of successive interactions in multiple detector layers. In the successive interaction processes, the emission direction of the incident gamma ray, the scattering angle, and the changed traveling path after the Compton scattering interaction in each detector, were determined by a conical surface uniform random number generator (RNG), and by a Klein-Nishina RNG. The 3D image generator has two functions: the recovery of the initial source energy spectrum and the 3D spatial distribution of the source. We evaluated the analytic simulator and image generator with two different energetic point radiation sources (Cs-137 and Co-60) and with an MSCC comprising three detector layers. The recovered initial energies of the incident radiations were well differentiated from the generated MSCC events. Correspondingly, we could obtain a multi-tracer image that combined the two differentiated images. The developed analytic simulator in this study emulated the randomness of the detection process of a multiple-scattering Compton camera, including the inherent degradation factors of the detectors, such as the limited spatial and energy resolutions. The Doppler-broadening effect owing to the momentum distribution of electrons in Compton scattering was not considered in the detection process because most interested isotopes for biomedical and environmental applications have high energies that are less sensitive to Doppler broadening. The analytic simulator and image generator for MSCC can be utilized to determine the optimal geometrical parameters, such as the distances between detectors and detector size, thus affecting the imaging performance of the Compton camera prior to the development of a real system.

Evaluation of Oxidation Efficiency of Aromatic Volatile Hydrocarbons using Visible-light-activated One-Dimensional Metal Oxide Doping Semiconductor Nanomaterials prepared by Ultrasonic-assisted Hydrothermal Synthesis (초음파-수열합성 적용 가시광 활성 일차원 금속산화물 도핑 반도체 나노소재를 이용한 방향족 휘발성 탄화수소 제어효율 평가)

  • Jo, Wan-Kuen;Shin, Seung-Ho;Choi, Jeong-Hak;Lee, Joon Yeob
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.967-974
    • /
    • 2018
  • In this study, we evaluated the photocatalytic oxidation efficiency of aromatic volatile hydrocarbons by using $WO_3$-doped $TiO_2$ nanotubes (WTNTs) under visible-light irradiation. One-dimensional WTNTs were synthesized by ultrasonic-assisted hydrothermal method and impregnation. XRD analysis revealed successful incorporation of $WO_3$ into $TiO_2$ nanotube (TNT) structures. UV-Vis spectra exhibited that the synthesized WTNT samples can be activated under visible light irradiation. FE-SEM and TEM images showed the one-dimensional structure of the prepared TNTs and WTNTs. The photocatalytic oxidation efficiencies of toluene, ethylbenzene, and o-xylene were higher using WTNT samples than undoped TNT. These results were explained based on the charge separation ability, adsorption capability, and light absorption of the sample photocatalysts. Among the different light sources, light-emitting-diodes (LEDs) are more highly energy-efficient than 8-W daylight used for the photocatalytic oxidation of toluene, ethylbenzene, and o-xylene, though the photocatalytic oxidation efficiency is higher for 8-W daylight.