• 제목/요약/키워드: Semiconductive

검색결과 109건 처리시간 0.039초

반도전성 실리콘 고무의 플라즈마 처리에 따른 표면의 특성변화 (Changes of Surface Properties by Plasma Treatment on the Surface of Semiconductive Silicone Rubber)

  • 이기택;허창수
    • 한국전기전자재료학회논문지
    • /
    • 제18권8호
    • /
    • pp.696-701
    • /
    • 2005
  • This paper was investigated the changes of surface properties of high-temperature-vulcanized (HTV) semiconductive silicone rubber due to oxygen plasma discharge. The modifications produced on the silicone rubber surface by oxygen plasma were accessed using Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), contact angle and Surface Roughness Tester. The results of the chemical analysis Showed that C-H bonds were broken due to plasma discharge and Silica-like bonds (SiOx, x=$3\~4$) increased. It is thought that the above changes lead to the increase of surface energy of high-temperature-vulcanized (HTV) semiconductive silicone rubber also, Surface roughness was increased with cleavage of side-chains and oxidation process, it confirmed change as the SEM. The micromorphology of surface and hydrophobicity due to plasma discharge based on our results were discussed.

산소 플라즈마 처리에 의한 반도전성 실리콘 고무 표면의 특성변화 (A Study of the Changes of Surface Properties on Semiconductive-Insulating of Silicone Rubber by Oxygen Plasma Treatment)

  • 이기택;황선묵;홍주일;허창수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 춘계학술대회 논문집
    • /
    • pp.25-28
    • /
    • 2005
  • This paper was investigated the changes of surface properties of high-temperature-vulcanized(HTV) semiconductive silicone rubber due to oxygen plasma discharge. The modifications produced on the silicone surface by oxygen plasma were accessed using x-ray photoelectron spectroscopy(XPS), contact angle and Scanning Electron Microscope(SEM). The results of the chemical analysis showed that C-H bonds were broken due to plasma discharge and Silica-like bonds (SiOx. x=3~4) increased. It is thought that the above changes lead to the increase of surface energy of high-temperature-vulcanized(HTV) semiconductive silicone rubber. The micromorphology of surface and hydrophobicity due to plasma discharge based on our results were discussed.

  • PDF

전력케이블에서 동테이프 차폐 구조에 따른 반도전성 재료의 전기적 특성 연구 (A Study on the Electrical Properties of Semiconductive Materials with Copper Tape Shield Structure in Power Cable)

  • 양종석;류찬;전근배;성백룡
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.251-252
    • /
    • 2008
  • In this study, we have investigated electrical properties of semiconductive materials for power cable caused by copper tape shield structure. Volume resistivity of specimens was measured by volume resistivity meter after 10 minutes in the pre-heated oven of both 23 [$^{\circ}C$] and 90 [$^{\circ}C$]. From this experimental results, the volume resistivity had different properties because of PTC/NTC tendency at between 23 [$^{\circ}C$] and 90 [$^{\circ}C$].

  • PDF

PET 필름의 전기적 특성에 미치는 계면효과 (The Effects of Interfacial on the Electrical Properties in PET Films)

  • 강무성;이창훈;박수길;박대희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권5호
    • /
    • pp.281-284
    • /
    • 1999
  • In this paper, the electrical conduction, breakdown strength and dielectric properties were investigated in the interfaces of PET films. The volume resistivity and breakdown strength were decreased; especially the specimens with semiconductive layer showed the lowest breakdown strength. This decrease of electrical properties was appeared by increasing charge density in inhomogeneous layer of PET. The dielectric properties of PET did not show significant difference with PET/PET but the films with semiconductive interface layer showed the increase in capacitance and $tan\delta$ was affected by the PET rather than semiconductive layer. It is assumed that the variation of $tan\delta$ was affected by the dielectric polarization and the leakage current(charge).

  • PDF

HVDC 절연유 중에서 Silicone Rubber의 팽윤특성 분석 (The Analysis of HVDC Cable Oil Swelling Characteristics on the Silicone Rubber)

  • 이태호;김남열;김정년;전승익
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.623-624
    • /
    • 2007
  • This work examines the effects of swelling MI type HVDC cable oil on the semiconductive silicone rubber and silicone rubber as used in accessories for application on outdoor termination (EBA) slip on sleeve. The behavior of volume resistivity is monitored as a function of the amount of cable oil diffused into the material. Resistivities of semiconductive silicone samples up to the typical insulator range (${\sim}10^{10}{\Omega}-cm$) are observed as a consequence of swelling due to the presence of the diffused oil. The measured volume resistivities of the oil-impregnated semiconductive silicone rubber are compared to desired value as function of stress relief cone.

  • PDF

Dielectric Breakdown Characteristics in LDPE with Semiconductive Electrodes

  • 강태오;이윤석;김화종;김관성;전찬오;박대희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.1171-1173
    • /
    • 1993
  • Dielectric breakdown strength of LDPE films was investigated using metal electrodes and semiconductive electrodes respectively. In both of two cases, the results show that there are characteristics of dependence on thickness and dependence on temperature. However, there are some differences in both cases.

  • PDF

154kV 전력케이블용 XLPE 절연체와 반도전 재료의 비열 및 열전도 (Specific Heat and Thermal Conductivity of XLPE Insulator and Semiconductive Materials for 154kV Power Cable)

  • 이경용;양종식;최용성;박대희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 춘계학술대회 논문집
    • /
    • pp.19-24
    • /
    • 2005
  • To improve mean-life and reliability of power cable, we have investigated specific heat (Cp) and thermal conductivity of XLPE insulator and semiconductive materials in 154kV underground power transmission cable. Specimens were respectively made of sheet form with EVA, EEA and EBA added 30wt%, carbon black, and the other was made of sheet form by cutting XLPE insulator in 154kV power cable. Specific heat (Cp) and thermal conductivity were· measured by DSC (Differential Scanning Calorimetry) and Nano Flash Diffusivity. Specific-heat measurement temperature ranges of XLPE insulator were from 20[$^{\circ}C$] to 90[$^{\circ}C$], and the heating rate was 1[$^{\circ}C$/min]. And the measurement temperatures of thermal conductivity were 25[$^{\circ}C$}], 55[$^{\circ}C$] and 90[$^{\circ}C$]. In case of semiconductive materials, the measurement temperature ranges of specific heat were from 20[$^{\circ}C$] to 60[$^{\circ}C$], and the heating rate was 1[$^{\circ}C$/min]. And the measurement temperatures of thermal conductivity were 25[$^{\circ}C$] and 55[$^{\circ}C$]. From these experimental results, both specific heat and thermal conductivity were increased by heating rate because volume of materials was expanded according to rise in temperature.

  • PDF

전력케이블에서 탄소나노튜브 함량에 따른 반도전층 재료의 특성 연구 (A Study on the Properties of Semiconducting Materials with contents of Carbon Nanotube in Power Cable)

  • 양종석;신동훈;이경용;박대희
    • 전기학회논문지
    • /
    • 제56권3호
    • /
    • pp.571-576
    • /
    • 2007
  • In this paper, we have investigated chemical, mechanical and structural properties by changing the content of carbon nanotube, Which is a component part of semiconductive shield in underground power transmission cable. The multi luminescence spectrometer MLA-GOLDS was used to investigate chemical properties of specimens. Also, the density meter EW-200SG was used to investigate the mechanical properties of specimens, and the FE-SEM S-4300 in Hitachi was used for dispersion of CNT(Carbon nanotube). As a result, the cl intensity, which show the effect of oxidation, was decreased by CNT of 1 [wt%], and the density of semiconductive shield materials with CNT and EEA(Ethylene Ethyl Acrylate) is lower than that for commercial semiconductive shield materials. Also, the properties of dispersion showed an increase according to an increase in the ratio of CNT, and the properties were the best at 5 wt%. Therefore, excellent chemical, mechanical and structural properties can be improved with the small amount of CNT.

전력케이블내 반도전 재료의 전기적 및 기계적 특성; 체적저항과 Stress-Strain 측정 (Electrical and Mechanical Properties of Semiconductive Shield in Power Cable; Volume Resistivity and Stress-Strain Measurement)

  • 이경용;양종석;최용성;박대희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권2호
    • /
    • pp.45-50
    • /
    • 2005
  • To improve mean-life and reliability of power cable, in this study, we have investigated electrical properties and stress-strain showing by changing the content of carbon black that is semiconductive additives for underground power transmission. Specimens were made of sheet form with the nine of specimens for measurement. Volume resistivity of specimens was measured by volume resistivity meter after 10 minutes in the pre-heated oven of both 25±1 [℃] and 90±1 [℃]. And stress-strain of specimens was measured by TENSOMETER 2000. A speed of measurement was 200[mm/min], ranges of stress and strain were 400[Kgf/㎠] and 600[%]. In addition tests of stress-strain were progressed by aging specimens in air oven. From this experimental results, volume resistivity was high according to increasing the content of carbon black. And yield stress was increased, while strain was decreased according to increasing the content of carbon black. And stress-strain were decreased some after aging because of oxidation reaction of chemical defect. We could know EEA was excellent more than other specimens from above experimental results.

전력케이블에서 반도전 재료의 이온성 불순물에 따른 열적 특성 (Thermal Properties According to Ionic Impurities of Semiconductive Material in Power Cable)

  • 이경용;최용성;박대희
    • 한국전기전자재료학회논문지
    • /
    • 제17권12호
    • /
    • pp.1326-1331
    • /
    • 2004
  • In this paper, we have investigated thermal properties and Impurities content of specimens showing by changing the content of carbon black that is semiconductive materials for underground power transmission. Specimens were made of sheet form with the three of existing resins and the nine of specimens for measurement. Impurities content of specimens was measured by ICPAES(Inductively Coupled Plasma Atomic Emission Spectrometer). Heat capacity(ΔH) and melting temperature(Tm) were measured by DSC(Differential Scanning Calorimetry). The ranges of measurement temperature were from $0^{\circ}C$ to 20$0^{\circ}C$, and heating temperature was 4$^{\circ}C$/min. And then thermal diffusivity was measured by LFA 447. The measurement temperature was $25^{\circ}C$. Impurities content was highly measured according to increasing the content of carbon black from ICPAES results. And heat capacity and melting temperature from the DSC results were simultaneously decreased according to increasing the content of carbon black, while thermal diffusivity was increased according to increasing the content of carbon black. Because ionic impurities of carbon black containg Fe, Co, Mn, Al, and Zn were rapidly increasing kinetic energy by vibration of ionic impurities through the applied heat energy.