• Title/Summary/Keyword: Semi-transverse

Search Result 74, Processing Time 0.023 seconds

A Study on the Effective Fire and Smoke Control in Road-Tunnel with Semi-Transverse Ventilation (도로터널 화재시 반횡류식 균일배기 환기방식에서의 최적배연 연구)

  • Jeon, Yong-Han;Yoo, Ji-Oh;Kim, Nam-Jin;Seo, Tae-Boem;Kim, Jong-Yoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.3
    • /
    • pp.186-192
    • /
    • 2009
  • In this study it is intended to review the moving characteristics of smoke by performing visualization for calculation of the optimal smoke exhaust air volume in case a fire occurs in tunnels where transverse ventilation is applied, and to obtain basic data necessary for design of the smoke exhaust systems by deriving optimal smoke exhaust operational conditions under various conditions. As a result of this study, if it was assumed 0 critical velocity in the tunnel, the smoke exhaust air volume was limited within 250 meter in the road-tunnel disaster prevention indicator and the exhaust efficiency was from 55.1% to 95.8% in the result of this study. In case of oversized exhaust ports, the generated smoke is more than the case of uniform exhaust. When the critical velocity in the tunnel is 1.75 m/s and 2.5 m/s, the optimal smoke exhaust air volume has to be more than $173\;m^3/s$, $236\;m^3/s$ for the distance of the moving smoke which can limit the distance to 250 m.

Geodetic monitoring on onshore wind towers: Analysis of vertical and horizontal movements and tower tilt

  • Canto, Luiz Filipe C.;de Seixas, Andrea
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.309-328
    • /
    • 2021
  • The objective of this work was to develop a methodology for geodetic monitoring on onshore wind towers, to ascertain the existence of displacements from object points located in the tower and at the foundation's base. The geodesic auscultation was carried out in the Gravatá 01 and 02 wind towers of the Eólica Gravatá wind farm, located in the Brazilian municipality of Gravatá-PE, using a stable Measurement Reference System. To verify the existence of displacements, pins were implanted, with semi-spherical surfaces, at the bases of the towers being monitored, measured by means of high-precision geometric leveling and around the Gravatá 02 tower, concrete landmarks, iron rods and reflective sheets were implanted, observed using geodetic/topographic methods: GNSS survey, transverse with forced centering, three-dimensional irradiation, edge measurement method and trigonometric leveling of unilateral views. It was found that in the Gravatá 02 tower the average rays of the circular sections of the transverse welds (ST) were 1.8431 m ± 0.0005 m (ST01) and 1.6994 m ± 0.0268 m of ST22, where, 01 and 22 represent the serial number of the transverse welds along the tower. The average calculation of the deflection between the coordinates of the center of the circular section of the ST22 and the vertical reference alignment of the ST1 was 0°2'39.22" ± 2.83" in the Northwest direction and an average linear difference of 0.0878 m ± 0.0078 m. The top deflection angle was 0°8'44.88" and a linear difference of ± 0.2590 m, defined from a non-linear function adjusted by Least Squares Method (LSM).

O Analysis of Filament Wound Pressure Tank Considering Winding Angle Variation In Thickness Direction (두께 방향의 와인딩 각도 변화를 고려한 필라멘트 와인딩 된 압력탱크의 해석)

  • 김철웅;박재성;홍창선;김천곤
    • Composites Research
    • /
    • v.13 no.2
    • /
    • pp.51-60
    • /
    • 2000
  • Filament wound pressure vessels have been studied for the efficient design tool to consider the variation of fiber angles through-the thickness direction. Filament winding patterns were simulated from semi-geodesic fiber path equation to calculate fiber path on arbitrary surface. Finite element analyses were performed considering fiber angle variation in longitudinal and thickness directions by ABAQUS. For the finite element modeling of the pressure tank, the 3-dimensional layered solid element was utilized. From the stress results of pressure tanks, maximum stress criterion in transverse direction was applied to modify material properties for failed region. In the end of each load increment, resultant layer stresses were compared with a failure criterion and properties were reduced to 1/10 for a failed layer. Results of progressive failure analysis were compared with two experimental data.

  • PDF

Static analysis of non-uniform heterogeneous circular plate with porous material resting on a gradient hybrid foundation involving friction force

  • Rad, A. Behravan;Farzan-Rad, M.R.;Majd, K. Mohammadi
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.591-610
    • /
    • 2017
  • This paper is concerned with the static analysis of variable thickness of two directional functionally graded porous materials (FGPM) circular plate resting on a gradient hybrid foundation (Horvath-Colasanti type) with friction force and subjected to compound mechanical loads (e.g., transverse, in-plane shear traction and concentrated force at the center of the plate).The governing state equations are derived in terms of displacements based on the 3D theory of elasticity, assuming the elastic coefficients of the plate material except the Poisson's ratio varying continuously throughout the thickness and radial directions according to an exponential function. These equations are solved semi-analytically by employing the state space method (SSM) and one-dimensional differential quadrature (DQ) rule to obtain the displacements and stress components of the FGPM plate. The effect of concentrated force at the center of the plate is approximated with the shear force, uniformly distributed over the inner boundary of a FGPM annular plate. In addition to verification study and convergence analysis, numerical results are displayed to show the effect of material heterogeneity indices, foundation stiffness coefficients, foundation gradient indices, loads ratio, thickness to radius ratio, compressibility, porosity and friction coefficient of the foundation on the static behavior of the plate. Finally, the responses of FG and FG porous material circular plates to compound mechanical loads are compared.

A Novel Generalized Nonlinear Dispersion Equation for Five-Layer Waveguides with Kerr-like Nonlinearity

  • Jeong, Jong-Sool;Song, Seok-Ho;Lee, El-Hang
    • ETRI Journal
    • /
    • v.18 no.2
    • /
    • pp.75-86
    • /
    • 1996
  • A new method is proposed for the analysis of optical properties of stationary transverse electirc (TE) nonlinear waves in the five-layer waveguide which consists of a linear guiding layer with two nonlinear bounding layers sandwiched between a semi-infinite clad and a substrate. By using the relation of the interface electric fields, we obtain the generalized form of nonlinear dispersion equations as an analytic and flexible form. In order to verify the dispersion equation, we apply the dispersion equation to the analysis of the symmetric five-layer waveguide. The nonlinear dispersion curves for several thicknesses of the nonlinear thin film is also presented.

  • PDF

An analytical model for inversion layer electron mobility in MOSFET (MOS소자 반전층의 전자이동도에 대한 해석적 모델)

  • 신형순
    • Electrical & Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.174-179
    • /
    • 1996
  • We present a new physically based analytical equation for electron effective mobility in MOS inversion layers. The new semi-empirical model is accounting expicitly for surface roughness scattering and screened Coulomb scattering in addition to phonon scattering. This model shows excellent agreement with experimentally measured effective mobility data from three different published sources for a wide range of effective transverse field, channel doping and temperature. By accounting for screened Coulomb scattering due to doping impurities in the channel, our model describes very well the roll-off of effective mobility in the low field (threshold) region for a wide range of channel doping level (Na=3.0*10$^{14}$ - 2.8*10$^{18}$ cm$^{-3}$ ).

  • PDF

Free vibration analysis of moderately thick rectangular laminated composite plates with arbitrary boundary conditions

  • Naserian-Nik, A.M.;Tahani, M.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.217-240
    • /
    • 2010
  • A semi-analytical method is presented for accurately prediction of the free vibration behavior of generally laminated composite plates with arbitrary boundary conditions. The method employs the technique of separation of spatial variables within Hamilton's principle to obtain the equations of motion, including two systems of coupled ordinary homogeneous differential equations. Subsequently, by applying the laminate constitutive relations into the resulting equations two sets of coupled ordinary differential equations with constant coefficients, in terms of displacements, are achieved. The obtained differential equations are solved for the natural frequencies and corresponding mode shapes, with the use of the exact state-space approach. The formulation is exploited in the framework of the first-order shear deformation theory to incorporate the effects of transverse shear deformation and rotary inertia. The efficiency and accuracy of the present method are demonstrated by obtaining solutions to a wide range of problems and comparing them with finite element analysis and previously published results.

Nondestructive Evaluation of Semi-Insulating GaAs Wafer Surface Properties Using SAW (SAW를 이용한 반절연 GaAs웨이퍼 표면 성질의 비파괴 측정)

  • Park, Nam-Chun;Park, Sun-Kyu;Lee, Kuhn-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.19-30
    • /
    • 1991
  • The surface properties such as energy gap, exciton, shallow trap level, deep trap level, type inversion with annealing and metastable state of $EL_2$ level of SI GaAs wafers and the conductivity distribution of 2 inch Cr doped GaAs wafer were investigated using nondestructive TAV(transverse acoustoelectric voltage) technique. The TAV is generated when SAW and semiconductor interact. We also have tried newly SAW oscillator technique to investigate the surface properties of semiconductor wafers and we have shown the validity of this technique.

  • PDF

Layered finite element method in cracking and failure analysis of RC beams and beam-column-slab connections

  • Guan, Hong;Loo, Yew-Chaye
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.645-662
    • /
    • 1997
  • A nonlinear semi-three-dimensional layered finite element procedure is developed for cracking and failure analysis of reinforced concrete beams and the spandrel beam-column-slab connections of flat plates. The layered element approach takes the elasto-plastic failure behaviour and geometric nonlinearity into consideration. A strain-hardening plasticity concrete model and a smeared steel model are incorporated into the layered element formulation. Further, shear failure, transverse reinforcement, spandrel beams and columns are successfully modelled. The proposed method incorporating the nonlinear constitutive models for concrete and steel is implemented in a finite element program. Test specimens including a series of reinforced concrete beams and beam-column-slab connections of flat plates are analysed. Results confirm the effectiveness and accuracy of the layered procedure in predicting both flexural and shear cracking up to failure.

Dynamic behaviour of multi-stiffened plates

  • Bedair, Osama
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.277-296
    • /
    • 2009
  • The paper investigates the dynamic behaviour of stiffened panels. The coupled differential equations for eccentric stiffening configuration are first derived. Then a semi-analytical procedure for dynamic analysis of stiffened panels is presented. Unlike finite element or finite strip methods, where the plate is discretized into a set of elements or strips, the plate in this procedure is treated as a single element. The potential energy of the structure is first expressed in terms generalized functions that describe the longitudinal and transverse displacement profiles. The resulting non-linear strain energy functions are then transformed into unconstrained optimization problem in which mathematical programming techniques are employed to determine the magnitude of the lowest natural frequency and the associated mode shape for pre-selected plate/stiffener geometric parameters. The described procedure is verified with other numerical methods for several stiffened panels. Results are then presented showing the variation of the natural frequency with plate/stiffener geometric parameters for various stiffening configurations.