• Title/Summary/Keyword: Semi-solid materials

Search Result 151, Processing Time 0.021 seconds

Optimization approach applied to nonlinear analysis of raft-pile foundations

  • Tandjiria, V.;Valliappan, S.;Khalili, N.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.6
    • /
    • pp.533-550
    • /
    • 1999
  • Optimal design of raft-pile foundations is examined by combining finite element technique and the optimization approach. The piles and soil medium are modeled by three dimensional solid elements while the raft is modelled by shell elements. Drucker-Prager criterion is adopted for the soil medium while the raft and the piles are assumed to be linear elastic. For the optimization process, the approximate semi-analytical method is used for calculating constraint sensitivities and a constraint approximation method which is a combination of the extended Bi-point approximation and Lagrangian polynomial approximation is used for predicting the behaviour of the constraints. The objective function of the problem is the volume of materials of the foundation while the design variables are raft thickness, pile length and pile spacing. The generalized reduced gradient algorithm is chosen for solving the optimization process. It is demonstrated that the method proposed in this study is promising for obtaining optimal design of raft-pile foundations without carrying out a large number of analyses. The results are also compared with those obtained from the previous study in which linear analysis was carried out.

Effect of the Casting Conditions on the Globulization of Primary Al of $AlSi_7Mg$ Alloy (($AlSi_7Mg$알루미늄 합금의 초정 구형화에 대한 주조조건의 영향)

  • Han, Yo-Sub;Lee, Ho-In;Lee, Jae-Chul
    • Journal of Korea Foundry Society
    • /
    • v.23 no.1
    • /
    • pp.40-46
    • /
    • 2003
  • Semisolid forming requires alloys with non-dendritic microstructure of the thixotropy. Recently, low pouring temperture method without stirring, i.e. liquidus casting has been found out new fabrication method of the semisolid metals. Effects of melt superheat and mold conditions on the globulization of primary Al of $AlSi_7Mg$ alloy were investigated in gravity casting process without stirring. The microstructures of primary Al as function of melt superheat and mold temperature show globular, rosette and dendritic shapes. The conditions for globular microstructure of primary Al were low melt superheat < 35 K and low mold temperature < 500 K. The thermal conditions for globular microstructure of primary Al were undercooled melt at early solidification stages and slow cooling < 0.6 K/s. It was found that the initial microstructure was maintained throughout the solidification and the globules of primary Al can be obtained by high nucleation of fine and spherical nuclei due to enhanced undercooling of melt.

Molecular Dynamics Simulation of Nano-Deformation Behavior of the Grain-Size Controlled Rheology Material (분자동력학을 이용한 결정립 제어 레오로지 소재의 나노 변형거동 전산모사)

  • Kim J. W.;Youn S. W.;Kang C. G.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.319-326
    • /
    • 2005
  • In this study, the nano-deformation behavior of semi-solid Al-Si alloy was investigated using a molecular dynamics simulation as a part of the research on the surface crack behavior in thixoformed automobile parts. The microstructure of the grain-size controlled Al-Si alloy consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary phase of the grain-size controlled Al-Si alloy were investigated through the molecular dynamics simulation. The primary phase was assumed to be single crystal aluminum. It was shown that the vacancy occurred at the zone where silicon molecules were.

Processing Comparison for Fabrication of Al Control Arm (Al 합금 컨트롤 암의 제조 공정 비교 연구)

  • Kwon, Y.N.;Lee, Y.S.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.15 no.7 s.88
    • /
    • pp.490-495
    • /
    • 2006
  • The application of Al parts in passenger car has been increasing for the last decade, which gives many advantages such as better fuel efficiency, driving performance and safety. Control arm is one of the most preferably substituted parts from steel into Al alloys among numerous automotive parts. Currently, both wrought and cast Al alloys can find the application for control arm in passenger car. The balance between performance and cost determines a material as well as a fabrication process for a particular part model. In the present study, comparison among various processing techniques has been carried out to build up a data base for Al control arm fabrication.

Advances in modelling the mechanisms and rheology of electrorheological fluids

  • See, Howard
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.3
    • /
    • pp.169-195
    • /
    • 1999
  • An electrorheological fluid (ERF) is typically a suspension of semi-conducting solid particles dispersed in an insulating carrier fluid, and shows a dramatic change in rheological properties when an external electric field is applied. This rapid and reversible change in flow properties has potential application in many electronically controlled mechanical devices, but the development of efficient devices and optimal materials for ERF is still hindered by incomplete understanding of the fundamental physical mechanisms involved. In recent years there have been considerable advances In relating microstructural models to the rheological behaviour, and these will form the basis of this review. Results of the theoretical calculations and simulations will be compared to the key experimental evidence available. An overview of the fundamental physical concepts behind electrorheological fluid behaviour will also be presented.

  • PDF

Studies on Grain Size Refinement for Rheocasting of Hypereutectic Al-18% Si by Using Sieve Type Mechanical Stirrer (과공정 Al-18% Si 합금의 레올로지 성형시 기계적 교반을 이용한 입자 미세화 연구)

  • 강용기;박진욱;강성수;강충길;문영훈
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.389-394
    • /
    • 2000
  • The studies on gram size refinement for rheocast processing of hypereutectic Al-18%Si alloys have been investigated in the present study. To increase the efficiency of mechanical stirring, sieve type stirrer are newly designed and implemented for rheocasting of hypereutectic Al-18%Si alloy. Mechanical stirring of semi-solid slurry by using sieve type mechanical stirrer results in morphological changes of the primary Si particles, from angular rod shape to near spherical shape and uniform distribution of proeutectic Si. The remarkable spheroidization of Primary Si Particles and distributional uniformity of proeutectic Si show well the efficiency of sieve type mechanical stirring method which can accelerate the coalescence-fracture-wear of the individual particles by strong turbulent flow between lattices during rotation of sieve type stirrer.

  • PDF

A Study on Rheology Forming Process of Al-7%Si Alloy with Electromagnetic Application (전자교반을 응용한 Al-7%Si 알루미늄 소재의 레올로지 성형공정에 관한 연구)

  • Ko J.H.;Seo P.K.;Kang C.G.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.195-205
    • /
    • 2006
  • This paper focuses on a rheo-forming of am part fabricated by electromagnetic stirring system (EMS). This forming process take place under high pressure of high pressure die casting and thin walled casting is possible. Furthermore, the productivity is better than low pressure die casting because of shorter cycle time. The advantages of rheo-forming are performed in the semi solid state with laminar flow and the gas content is low, which makes welding possible. Therefore this research applies for arm part with EMS and has investigated the mechanical properties after T6 and T5 heat-treatment.

Measurements of Micro-Defects in the Aluminum Thixoformed Part using Computed Tomography(CT) Technology (CT를 이용한 알루미늄 반응고 성형품의 미세 결함 측정)

  • Lee, S.Y.;Kim, C.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.422-427
    • /
    • 2009
  • Computed tomography(CT) has been applied to measure micro-defects in the aluminum knuckle parts manufactured by the thixoforming process. 6061 aluminum alloys were used to form knuckle samples in the semi-solid temperature after the SIMA processing of billets. Tensile specimens were cut from the different locations in a thixoformed knuckle. The size and the distribution of forming defects in tensile specimens were analyzed using CT scanning and image analysis technology before tensile tests. It has been qualitatively shown that the stress-strain curves were significantly affected by the size and the distribution of forming defects although the defect sizes lie in the range of micro-meters.

Wrinkling of a homogeneous thin solid film deposited on a functionally graded substrate

  • Noroozi, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.215-225
    • /
    • 2020
  • Thin films easily wrinkle under compressive loading due to their small bending stiffness resulting from their tiny thickness. For a thin film deposited on a functionally graded substrate with non-uniform stiffness exponentially changes along the length span in this paper, the uniaxial wrinkling problem is solved analytically in terms of hyper-Bessel functions. For infinite, semi-infinite and finite length systems the wrinkling load and wrinkling wavenumber are determined and compared with those in literature. In comparison with a homogeneous substrate-bounded film in which the wrinkling pattern is uniform along the length span, for a functionally graded substrate-film system the wrinkles accumulate around the softer location of the functionally graded substrate. Therefore, the effective length of the film influenced by the wrinkles decreases, the amplitude of the wrinkles on softer regions of the functionally graded substrate grows and the wrinkling load of the functionally graded substrates with higher softening rate decreases more. The results of the current research are expected to be useful in science and technology of thin films and wrinkling of the structures especially living tissues.

A Study on the Characteristics of Microstructures in the Semi-solid State of Aluminum Powder Alloys (알루미늄 분말 합금의 반응고 미세조직 특성 연구)

  • Lee, Sang-Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.4
    • /
    • pp.205-212
    • /
    • 2008
  • Characteristics of microstructures, mechanical properties and formability of two Al-20Si-5Fe-2Ni alloys produced by gas atomizing (P/M) and spray forming (S/F) respectively were compared at temperatures up to $560^{\circ}C$. Room temperature hardness values and tensile strengths of both alloys were increased in accordance with temperature after heat treatment above $300^{\circ}C$. The highest values of hardness and tensile strength of both alloys were obtained at $490^{\circ}C$. It was interpreted that increase in hardness and tensile strength according to heating temperature between $300{\sim}490^{\circ}C$ was mainly related to increase in internal stress between Al matrix and reprecipitated particles. S/F alloys showed better formability and wear property than P/M alloys due to the homogenity of microstructures above $300^{\circ}C$.