• Title/Summary/Keyword: Semi-continuous

Search Result 428, Processing Time 0.023 seconds

Extraction and Identification of Volatile Isothiocyanates from Wasabi using Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 고추냉이로부터 휘발성 Isothiocyanates류 추출 및 동정)

  • Kim, Sung-Jin;Lee, Min-Kyung;Back, Sung-Sin;Chun, Byung-Soo
    • KSBB Journal
    • /
    • v.22 no.3
    • /
    • pp.174-178
    • /
    • 2007
  • The aim of this study was to identifyisothiocyanates (ITCs) from wasabi (Wasabi japonica Matsum) using supercritical carbon dioxide ($SCO_2$) and to compare the composition in the extracts between $SCO_2$ and organic solvents extraction. A semi-continuous high pressure apparatus was used to extract wasabi (roots, stems and leaves) at following conditions pressure 80$\sim$120 bar, temperature $40\sim50^{\circ}C$. Ether, ethanol, chloroform and dichloromethane were used as organic solvents. The ITCs extracted by means of both separation technologies were analyzed by a gas chromatography system. As the results of study, AITC and ITCs were highly extracted at 40$^{\circ}C$ and 80 bar. To extract AITC from wasabi, $SCO_2$ extraction is more effective than organic solvents extraction, resulted in thermal degeneration and remaining of organic solvents.

Medium Composition of Enterobacter cloacae YJ-1 for Maximizing Hydrogen Production (수소생산 증진을 위한 Enterobacter cloacae YJ-1의 배지조성)

  • Lee Ki-Seok;Kang Chang-Min;Chung Seon-Yong
    • KSBB Journal
    • /
    • v.20 no.5 s.94
    • /
    • pp.350-354
    • /
    • 2005
  • In order to maximize hydrogen production by Enterobacter cloacae YJ-1, anaerobic hydrogen producing bacteria, the medium composition was optimized. Glucose was better than other carbon sources in hydrogen production and its production was 975.4 mL/L at $2\%$ (w/v) for 48 h. Organic nitrogen sources were more effective than inorganic nitrogen sources and also yeast extract among organic nitrogens was the most effective in hydrogen production. Among metal ions, $Na_2MoO_4$ was most effective, and its production was 1753.3mL/L at $0.04\%$ (w/v). Addition of amino acid was very effective with compare to another components of medium, and cystein was most effective among them. Under the optimum medium obtained in batch culture, semi-batch culture in order to produce continuous hydrogen was run. The highest hydrogen production was earned at $3\%$(w/v) of glucose and the amount was 2215.4 mL/L.

Standardization of composite connections for trapezoid web profiled steel sections

  • Saggaff, A.;Tahir, M.M.;Sulaiman, A.;Ngian, S.P.;Mirza, J.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.765-784
    • /
    • 2015
  • Connections are usually designed either as pinned usually associated with simple construction or rigid normally is associated with continuous construction. However, the actual behaviour falls in between these two extreme cases. The use of partial strength or semi-rigid connections has been encouraged by Euro-code 3 and studies on semi-continuous construction have shown substantial savings in steel weight of the overall construction. Composite connections are proposed in this paper as partial or full strength connections. Standardized connection tables are developed based on checking on all possible failure modes as suggested by "component method" for beam-to-column composite connection on major axis. Four experimental tests were carried out to validate the proposed standardised connection table. The test results showed good agreement between experimental and theoretical values with the ratio in the range between 1.06 to 1.50. All tested specimens of the composite connections showed ductile type of failure with the formation of cracks occurred on concrete slab at maximum load. No failure occurred on the Trapezoidal Web Profiled Steel Section as beam and on the British Section as column.

A semi-analytical and numerical approach for solving 3D nonlinear cylindrical shell systems

  • Liming Dai;Kamran Foroutan
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.461-473
    • /
    • 2023
  • This study aims to solve for nonlinear cylindrical shell systems with a semi-analytical and numerical approach implementing the P-T method. The procedures and conditions for such a study are presented in practically solving and analyzing the cylindrical shell systems. An analytical model for a nonlinear thick cylindrical shell (TCS) is established on the basis of the stress function and Reddy's higher-order shear deformation theory (HSDT). According to Reddy's HSDT, Hooke's law in three dimensions, and the von-Kármán equation, the stress-strain relations are developed for the thick cylindrical shell systems, and the three coupled nonlinear governing equations are thus established and discretized as per the Galerkin method, for implementing the P-T method. The solution generated with the approach is continuous everywhere in the entire time domain considered. The approach proposed can also be used to numerically solve and analyze the nonlinear shell systems. The procedures and recurrence relations for numerical solutions of shell systems are presented. To demonstrate the application of the approach in numerically solving for nonlinear cylindrical shell systems, a specific nonlinear cylindrical shell system subjected to an external excitation is solved numerically. In numerically solving for the system, the present approach shows higher efficiency, accuracy, and reliability in comparison with that of the Runge-Kutta method. The approach with the P-T method presented is practically sound especially when continuous and high-quality numerical solutions for the shell systems are considered.

The smart PFD with LRB for seismic protection of the horizontally curved bridge

  • Kataria, N.P.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.691-708
    • /
    • 2016
  • Recently, number of smart material are investigated and widely used in civil construction and other industries. Present study investigates the application of smart semi-active piezoelectric friction damper (PFD) made with piezoelectric material for the seismic control of the horizontally curved bridge isolated with lead rubber bearing (LRB). The main aim of the study is to investigate the effectiveness of hybrid system and to find out the optimum parameters of PFD for seismic control of the curved bridge. The selected curved bridge is a continuous three-span concrete box girder supported on pier and rigid abutment. The PFD is located between the deck and abutments or piers in chord and radial directions. The bridge is excited with four different earthquake ground motions with all three components (i.e. two horizontal and a vertical) having different characteristics. It is observed that the use of semi-active PFD with LRB is quite effective in controlling the response of the curved bridge as compared with passive system. The incorporation of the smart damper requiring small amount of energy in addition with an isolation system can be used for effective control the curved bridge against the dynamic loading.

Characteristics of Environment-friendly Semi-dry Turning (환경 친화적인 세미드라이 선삭가공 특성)

  • Lee, Jong-Hang;Lee, Sang-Jo;Lee, Seok-U;Choe, Heon-Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.221-226
    • /
    • 2002
  • As environmental restriction has continuously become more strict, machining technology has emphasized on development of environment-friendly technologies. In cutting technology, it has been well recognized that cutting fluids might have undesirable effects on workers health and working environment and, hence, recently there have been numerous attempts to minimize harmful effects of cutting fluids on environments. To minimize the use of cutting fluids in machining, conventional cutting fluids have been replaced with the technologies of pressurized cold air and minimum quantity lubrication (MQL). Compared with milling, turning is continuous cutting process, where tools are continuously heated up and lack of lubricity could lead to tool wear and deteriorated surface roughness. In this work, it has been investigated how tool wear and surface roughness could be affected by cutting conditions, supply and cooling methods. The experimental results show that MQL technology is able to minimize conventional cutting fluids.

Analytical solution of a contact problem and comparison with the results from FEM

  • Oner, Erdal;Yaylaci, Murat;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.607-622
    • /
    • 2015
  • This paper presents a comparative study of analytical method and finite element method (FEM) for analysis of a continuous contact problem. The problem consists of two elastic layers loaded by means of a rigid circular punch and resting on semi-infinite plane. It is assumed that all surfaces are frictionless and only compressive normal tractions can be transmitted through the contact areas. Firstly, analytical solution of the problem is obtained by using theory of elasticity and integral transform techniques. Then, finite element model of the problem is constituted using ANSYS software and the two dimensional analysis of the problem is carried out. The contact stresses under rigid circular punch, the contact areas, normal stresses along the axis of symmetry are obtained for both solutions. The results show that contact stresses and the normal stresses obtained from finite element method (FEM) provide boundary conditions of the problem as well as analytical results. Also, the contact areas obtained from finite element method are very close to results obtained from analytical method; disagree by 0.03-1.61%. Finally, it can be said that there is a good agreement between two methods.

Monitoring Management Plan for Changed Region with respect to Revision Periods (변화지역에 대한 갱신주기별 모니터링 운영방안)

  • Han, You Kyung;Yeom, Jun Ho;Kim, Yong Il;Lee, Byoung Kil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.5
    • /
    • pp.401-410
    • /
    • 2013
  • Due to the increasing need for spatial information, there have been a lot of research related with monitoring and revision of changed regions for the acquisition of the accurate and latest information. In this paper, the optimal monitoring management plan for changed regions with respect to the revision periods was proposed. For this purpose, the representative monitoring methods, which are based on database, professional manpower and crowdsourcing of continuous revision, and aerial imagery, satellite imagery and LiDAR of cyclic revision, were investigated. Then, the properties and application status of monitoring systems in Korea were illustrated according to the methods. Finally, the optimal monitoring management plan for continuous and cyclic revisions was suggested through the comparison of properties and revisionable objects of each method. From the result, it was shown to be appropriate for the optimal monitoring management plan of continuous revision as using Internet-Architectural Information System (e-AIS) database cooperated with professional manpower and crowdsourcing, and cyclic revision as using domestic high-resolution satellite images and LiDAR data processed semi-automatically.

The Effect of AI Agent's Multi Modal Interaction on the Driver Experience in the Semi-autonomous Driving Context : With a Focus on the Existence of Visual Character (반자율주행 맥락에서 AI 에이전트의 멀티모달 인터랙션이 운전자 경험에 미치는 효과 : 시각적 캐릭터 유무를 중심으로)

  • Suh, Min-soo;Hong, Seung-Hye;Lee, Jeong-Myeong
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.8
    • /
    • pp.92-101
    • /
    • 2018
  • As the interactive AI speaker becomes popular, voice recognition is regarded as an important vehicle-driver interaction method in case of autonomous driving situation. The purpose of this study is to confirm whether multimodal interaction in which feedback is transmitted by auditory and visual mode of AI characters on screen is more effective in user experience optimization than auditory mode only. We performed the interaction tasks for the music selection and adjustment through the AI speaker while driving to the experiment participant and measured the information and system quality, presence, the perceived usefulness and ease of use, and the continuance intention. As a result of analysis, the multimodal effect of visual characters was not shown in most user experience factors, and the effect was not shown in the intention of continuous use. Rather, it was found that auditory single mode was more effective than multimodal in information quality factor. In the semi-autonomous driving stage, which requires driver 's cognitive effort, multimodal interaction is not effective in optimizing user experience as compared to single mode interaction.

Winkler Springs (p-y curves) for pile design from stress-strain of soils: FE assessment of scaling coefficients using the Mobilized Strength Design concept

  • Bouzid, Dj. Amar;Bhattacharya, S.;Dash, S.R.
    • Geomechanics and Engineering
    • /
    • v.5 no.5
    • /
    • pp.379-399
    • /
    • 2013
  • In practice, analysis of laterally loaded piles is carried out using beams on non-linear Winkler springs model (often known as p-y method) due to its simplicity, low computational cost and the ability to model layered soils. In this approach, soil-pile interaction along the depth is characterized by a set of discrete non-linear springs represented by p-y curves where p is the pressure on the soil that causes a relative deformation of y. p-y curves are usually constructed based on semi-empirical correlations. In order to construct API/DNV proposed p-y curve for clay, one needs two values from the monotonic stress-strain test results i.e., undrained strength ($s_u$) and the strain at 50% yield stress (${\varepsilon}_{50}$). This approach may ignore various features for a particular soil which may lead to un-conservative or over-conservative design as not all the data points in the stress-strain relation are used. However, with the increasing ability to simulate soil-structure interaction problems using highly developed computers, the trend has shifted towards a more theoretically sound basis. In this paper, principles of Mobilized Strength Design (MSD) concept is used to construct a continuous p-y curves from experimentally obtained stress-strain relationship of the soil. In the method, the stress-strain graph is scaled by two coefficient $N_C$ (for stress) and $M_C$ (for strain) to obtain the p-y curves. $M_C$ and $N_C$ are derived based on Semi-Analytical Finite Element approach exploiting the axial symmetry where a pile is modelled as a series of embedded discs. An example is considered to show the application of the methodology.