• 제목/요약/키워드: Semi-active Vibration Control

검색결과 200건 처리시간 0.028초

Effects of multiple MR dampers controlled by fuzzy-based strategies on structural vibration reduction

  • Wilson, Claudia Mara Dias
    • Structural Engineering and Mechanics
    • /
    • 제41권3호
    • /
    • pp.349-363
    • /
    • 2012
  • Fuzzy logic based control has recently been proposed for regulating the properties of magnetorheological (MR) dampers in an effort to reduce vibrations of structures subjected to seismic excitations. So far, most studies showing the effectiveness of these algorithms have focused on the use of a single MR damper. Because multiple dampers would be needed in practical applications, this study aims to evaluate the effects of multiple individually tuned fuzzy-controlled MR dampers in reducing responses of a multi-degree-of-freedom structure subjected to seismic motions. Two different fuzzy-control algorithms are considered, a traditional controller where all parameters are kept constant, and a gain-scheduling control strategy. Different damper placement configurations are also considered, as are different numbers of MR dampers. To determine the robustness of the fuzzy controllers developed to changes in ground excitation, the structure selected is subjected to different earthquake records. Responses analyzed include peak and root mean square displacements, accelerations, and interstory drifts. Results obtained with the fuzzy-based control schemes are compared to passive control strategies.

A hybrid seismic response control to improve performance of a two-span bridge

  • Heo, Gwanghee;Kim, Chunggil;Jeon, Seunggon;Lee, Chinok;Jeon, Joonryong
    • Structural Engineering and Mechanics
    • /
    • 제61권5호
    • /
    • pp.675-684
    • /
    • 2017
  • In this paper, a hybrid seismic response control (HSRC) system was developed to control bridge behavior caused by the seismic load. It was aimed at optimum vibration control, composed of a rubber bearing of passive type and MR-damper of semi-active type. Its mathematical modeling was driven and applied to a bridge model so as to prove its validity. The bridge model was built for the experiment, a two-span bridge of 8.3 meters in length with the HSRC system put up on it. Then, inflicting the EI Centro seismic load on it, shaking table tests were carried out to confirm the system's validity. The experiments were conducted under the basic structure state (without an MR-damper applied) first, and then under the state with an MR-damper applied. It was also done under the basic structure state with a reinforced rubber bearing applied, then the passive on/off state of the HSRC system, and finally the semi-active state where the control algorithm was applied to the system. From the experiments, it was observed that pounding rather increased when the MR-damper alone was applied, and also that the application of the HSRC system effectively prevented it from occurring. That is, the experiments showed that the system successfully mitigated structural behavior by 70% against the basic structure state, and, further, when control algorithm is applied for the operation of the MR-damper, relative displacement was found to be effectively mitigated by 80%. As a result, the HSRC system was proven to be effective in mitigating responses of the two-span bridge under seismic load.

복합모드형 소형 MR감쇠장치 성능에 관한 실험적 연구 (An Experimental Study on the Performance of a Mixed Mode Type Small Scale MR Damper)

  • 이상현;민경원;이명규;박은천
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.461-468
    • /
    • 2005
  • In this paper, mixed mode magneto-rheological (MR) damper, which is applicable for vibration control of a small scale multi-story structure, is devised. First, the schematic configurations of the shear, flow, and mixed mode MR dampers are described with design constraints and then the analytical models to predict the field-dependent damping forces are derived for each type. Second, an appropriate size of the mixed mode MR damper is manufactured and its field-dependent damping characteristics are evaluated in time domain. Finally, the performance of the manufactured MR damper which is semi-actively applied to a small scale building excited by earthquake load, is numerically evaluated.

  • PDF

MR Damper의 Gap Size에 따른 제어성능 분석 (Analysis of Control Performance in Gap Size of MR Damper)

  • 허광희;전승곤;서상구;김대혁
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권1호
    • /
    • pp.41-50
    • /
    • 2021
  • 본 연구에서는 MR Damper의 제어력을 결정하는 다양한 요인들 중, 유로폭(Gap Size)을 다르게 선정하여 그에 따른 제어력의 변화를 확인하였다. 이를 위해 Gap Size 1.0mm, 1.5mm인 MR Damper 두 대를 제작하고 인가전류와 가진조건을 정하였으며 그에 따른 동하중 실험을 수행하였다. 실험결과 최소제어력은 Gap Size 1.0mm 조건이 Gap Size 1.5mm 조건보다 3.2배 높았으며 최대제어력은 Gap Size 1.0mm 조건이 Gap Size 1.5mm 조건보다 2.3배 높았다. 또한, 인가전류에 따른 제어력의 증가폭은 Gap Size 1.0mm일 때 34N, Gap Size 1.5mm일 때 12.7N으로 나타났다. Gap Size가 커질수록 전체 제어력과 인가전류에 따른 제어력의 증가는 감소하였다. 두 개의 MR Damper의 동적범위를 확인해 본 결과 Gap Size 1.0mm일 때 평균 2.3, Gap Size 1.5mm일 때 평균 2.8인 것을 볼 때 두 MR Damper의 준능동제어장치로써 사용가능성을 확인하였다.

A new approach to deal with sensor errors in structural controls with MR damper

  • Wang, Han;Li, Luyu;Song, Gangbing;Dabney, James B.;Harman, Thomas L.
    • Smart Structures and Systems
    • /
    • 제16권2호
    • /
    • pp.329-345
    • /
    • 2015
  • As commonly known, sensor errors and faulty signals may potentially lead structures in vibration to catastrophic failures. This paper presents a new approach to deal with sensor errors/faults in vibration control of structures by using the Fault detection and isolation (FDI) technique. To demonstrate the effectiveness of the approach, a space truss structure with semi-active devices such as Magneto-Rheological (MR) damper is used as an example. To address the problem, a Linear Matrix Inequality (LMI) based fixed-order $H_{\infty}$ FDI filter is introduced and designed. Modeling errors are treated as uncertainties in the FDI filter design to verify the robustness of the proposed FDI filter. Furthermore, an innovative Fuzzy Fault Tolerant Controller (FFTC) has been developed for this space truss structure model to preserve the pre-specified performance in the presence of sensor errors or faults. Simulation results have demonstrated that the proposed FDI filter is capable of detecting and isolating sensor errors/faults and actuator faults e.g., accelerometers and MR dampers, and the proposed FFTC can maintain the structural vibration suppression in faulty conditions.

Structural Design and Construction of High-rise Building to Feature the High-performance Oil Dampers for Vibration Control - Hibiya Mitsui Tower -

  • Kato, Takashi;Hara, Kenji;Tanaka, Hiroyuki
    • 국제초고층학회논문집
    • /
    • 제8권3호
    • /
    • pp.229-234
    • /
    • 2019
  • This report introduces the structural design of Hibiya Mitsui Tower built in Tokyo Midtown Hibiya. The upper part of this tower is used for offices and the lower portion is for commercial facilities and a cinema complex which need the large open spaces. The 192m-high building has 35 floors above ground and 4 below ground. The structure is a steel frame using CFT columns to feature the high-performance oil dampers and the buckling restrained braces for vibration control. First, an outline of the structural design of this building is presented. Second, we introduce the transfer frame adopted to realize the large open spaces in the lower part, and the long column supporting the corner part of the high-rise building to avoid making a shade on the adjacent Hibiya Park, which are the feature of this building. Finally, we present an outline of the latest highly efficient semi-active oil dampers adopted in this building, and the vibration responses of this tower.

다중 자기 코일 작동기를 사용한 MR damper의 설계해석 (Design of MR damper with multi_stage core)

  • 이규섭;유원희;류봉조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.525-528
    • /
    • 2008
  • The dynamic range of MR damper is the most important characteristics for the usage of semi-active control system. The damping force can be increased by simply decresing the orifice gap in the traditional oil damper, but it deteriorate the dynamic range in MR damper. In this paper, the multi-stage electro-magnetic core is suggested to maintain the performance of MR damper with a large damping force. The MR damper with 3 stage core is designed and manufactured for testing and analysis.

  • PDF

고속철도 구간 방음벽 상단 형상에 의한 음장 해석 및 효과 (Effectivness and Sound Field Analysis of Top Sections of Noise Barriers for High-speed Railway Lines)

  • 고효인;한환수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.135-138
    • /
    • 2005
  • On the basis of theoretical studies on the effect of the cylinders attached to semi-infinite screens, the effect of the tangential sound power-transport along the cylindrical top section of noise barriers is studied. Four types of acoustical mechanism between the surface of the cylinder and the adjacent air particles are investigated, namely Z $\rightarrow$ $\infty$, Z $\rightarrow$ pc, Z $\rightarrow$ 0 and actively controlled surface sound field. In active control case the sound power parallel to the surface of the attached cylinder is minimized by means of a secondary sound field, which is generated from a part of the attached cylinder. In each case the change in the acoustical shadow zone was shown and compared. The numerical study shows the possibility of deflecting the incident sound by minimizing the acoustical surface impedance of the upper sections.

  • PDF

현가장치의 성능향상을 위한 지능형 제어로직에 관한 연구 (A Study on the Knowledge Based Control Algorithm for Performance Improvement of the Automotive Suspension System)

  • 소상균;변기식
    • 동력기계공학회지
    • /
    • 제5권2호
    • /
    • pp.87-92
    • /
    • 2001
  • Automotive suspension system is a mechanism for isolation of the vibration coming from the road inputs. Recently, the electronically controlled suspension systems which may improve ride and handling performance have been developed. Here, the continuously controlled semi-active suspension system is focused. As a mechanism to control damping forces continuously, a solenoid valve is used. The modeling for the solenoid valve is introduced briefly, a vehicle dynamics modeling is constructed, and then combined system model is completed. To design the efficient control algorithm for the semiactive suspension system the knowledge based fuzzy logic is applied and the technique how to apply the sky-hook theory to the fuzzy logic is developed. Finally, to confirm the improvement of performance the computer simulation is carried out.

  • PDF

ER 유체와 압전작동기를 이용한 엔진마운트의 모델링 및 제어 (Modeling and Control of an Engine Mount Using ER Fluids and Piezoactuators)

  • 최승훈;최영태;최승복
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.500-510
    • /
    • 1996
  • This paper presents a new prototype of an engine mount for a passenger vehicle featuring ER(elector-rheological) fluids and piezoactuators. Conventional rubber mounts and various types of passive or semi-active hydraulic engine mounts have their own functional aims on the limited frequency band in the board engine operating frequency range. However, the proposed engine mount covers all frequency range of the engine operation. A mathematical model of the proposed engine mount is derived using the bond graph method which is inherently domain, the ER fluid is activated upon imposing electric field for vibration isolation while the piezoactuator. Computer control electric fluid for the ER fluid H.inf. cotrol technique is adopted for the piezoactuator. Computer simulation is undertaken in order to demonstrate isolation efficiency of the engine mount over wide operating frequency range.