• 제목/요약/키워드: Semi-active Damper

검색결과 296건 처리시간 0.023초

MR댐퍼 기반의 스마트 수동제어 시스템 (Smart Passive System Based on MR Damper)

  • 조상원;조지성;김춘호;이인원
    • 한국지진공학회논문집
    • /
    • 제9권1호통권41호
    • /
    • pp.51-59
    • /
    • 2005
  • 본 연구에서는 위의 어려움을 해결하기 위해, 스마트 수동제어 시스템을 제안하였다. 스마트 수동제어 시스템은 MR댐퍼와 EMI시스템으로 구성되며, EMI시스템은 영구자석과 솔레노이드 코일로 이루어진다. EMI시스템은 MR댐퍼의 왕복운동에너지를 전기에너지로 변환하므로, 스마트 수동제어 시스템은 외부 전원 없이 외부하중에 따라 댐퍼의 점성을 바꾸는 적응성을 갖는다. 따라서 간단하고 효율적인 장치로써, 대형토목구조물에 적용 가능하다. 이의 확인을 위해 예제를 통한 수치해석을 수행하였으며, 스마트 수동제어 시스템이 강진에 대해서는 기존의 반능동 제어 MR댐퍼 시스템 보다 우수한 성능을 보인다.

웨이브릿 변환과 진화전략에 의한 반능동 현가장치의 제어기 설계 (A Controller Design for Semi-active Suspension System Using Wavelet Treasform and Evolution Strategy)

  • 김대준;김한수;전향식;최영규;김성신
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권3호
    • /
    • pp.120-129
    • /
    • 2001
  • A two-degree-of-freedom quarter-car model is used as the basis for LQ and the proposed controller design for a semi-active suspension. The LQ controller results in the best rms performance trade-offs(as defined by performance index) between ride, handling and packaging requirements. In LQ controller, however, the conflict between road holding and ride comfort remains. The adaptive semi-active suspension control based on the road frequency are introduced in this paper. With this method, the trade-off between road holding and ride comfort can be relaxed. The road frequency is estimated by wavelet transform if rattle space signal. The simulation results show that the proposed controller is superior to the conventional LQ controller.

  • PDF

반능동 현수장치의 실시간 시뮬레이션용 궤도차량 모델 개발 (Development of a Tracked Vehicle Model for Real-time Simulation of Semi-active Suspension System)

  • 손영일;이종호;송병석
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.135-143
    • /
    • 2003
  • In this study, a real-time simulation model was developed for tracked vehicles with in-arm type semi-active hydro-pneumatic suspension unit using MATLAB S-functions. Since the vehicle model uses relative coordinates and massless link elements, the developed model has an enhanced analytic time performance. Through the comparison of simulation results with multi-body software(DADS), the vehicle model is verified. A controller using on-off skyhook control algorithm is designed with the pilot-centre]led proportional valve based on conventional damper characteristics. Exploiting the developed tracked vehicle model with other subsystem model such as a controller model, a suspension unit model, and a test road model, computer simulations are carried out. Control simulation results with the developed tracked vehicle model show that the semi-active suspension control system has a better performance than the conventional suspension system.

대형 트럭 반능동형 캐빈 공기 현가시스템의 유공압 모델링 및 동특성 해석 (Hydropneumatic Modeling and Dynamic Characteristic Analysis of a Heavy Truck Semi-active Cabin Air Suspension System)

  • 이광헌;정헌술
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.57-65
    • /
    • 2011
  • In this paper, a hydropneumatic modeling and dynamic analysis of a heavy truck semi-active cabin air suspension system is presented. Semi-active cabin air suspension system improves driver's ride comfort by controlling the damping characteristics in accordance with driving situation. So it can reduce vibration between truck frame and cabin. Semi-active cabin air suspension system is consist of air spring, leveling valve and CDC shock absorber, and full cabin system are mathematically modelled using AMESim software. Simulation results of components and full cabin system are compared with experimental data of components and test results of a cabin using 6 axis simulation table. It is found that the simulation results are in good agreements with test results, and the hydropneumatic model can be used well to predict dynamic characterics of heavy truck semi-active cabin air suspension system.

Shaking table testing of a steel frame structure equipped with semi-active MR dampers: comparison of control algorithms

  • Caterino, N.;Spizzuoco, M.;Occhiuzzi, A.
    • Smart Structures and Systems
    • /
    • 제15권4호
    • /
    • pp.963-995
    • /
    • 2015
  • The effectiveness of the various control algorithms for semi-active structural control systems proposed in the literature is highly questionable when dealing with earthquake actions, which never reach a steady state. From this perspective, the paper summarizes the results of an experimental activity aimed to compare the effectiveness of four different semi-active control algorithms on a structural mock up representative of a class of structural systems particularly prone to seismic actions. The controlled structure is a near full scale 2-story steel frame, equipped with two semi-active bracing systems including two magnetorheological dampers designed and manufactured in Europe. A set of earthquake records has been applied at the base of the structure, by utilizing a shaking table facility. Experimental results are compared in terms of displacements, absolute accelerations and energy dissipation capability. A further analysis on the percentage incidence of undesired and/or unpredictable operations corresponding to each algorithm gives an insight on some factors affecting the reliability and, in turn, the real effectiveness of semi-active structural control systems.

Vibration control of a time-varying modal-parameter footbridge: study of semi-active implementable strategies

  • Soria, Jose M.;Diaz, Ivan M.;Garcia-Palacios, Jaime H.
    • Smart Structures and Systems
    • /
    • 제20권5호
    • /
    • pp.525-537
    • /
    • 2017
  • This paper explores different vibration control strategies for the cancellation of human-induced vibration on a structure with time-varying modal parameters. The main motivation of this study is a lively urban stress-ribbon footbridge (Pedro $G\acute{o}mez$ Bosque, Valladolid, Spain) that, after a whole-year monitoring, several natural frequencies within the band of interest (normal paring frequency range) have been tracked. The most perceptible vibration mode of the structure at approximately 1.8 Hz changes up to 20%. In order to find a solution for this real case, this paper takes the annual modal parameter estimates (approx. 14000 estimations) of this mode and designs three control strategies: a) a tuned mass damper (TMD) tuned to the most-repeated modal properties of the aforementioned mode, b) two semi-active TMD strategies, one with an on-off control law for the TMD damping, and other with frequency and damping tuned by updating the damper force. All strategies have been carefully compared considering two structure models: a) only the aforementioned mode and b) all the other tracked modes. The results have been compared considering human-induced vibrations and have helped the authors on making a decision of the most advisable strategy to be practically implemented.

Buffeting response control of a long span cable-stayed bridge during construction using semi-active tuned liquid column dampers

  • Shum, K.M.;Xu, Y.L.;Guo, W.H.
    • Wind and Structures
    • /
    • 제9권4호
    • /
    • pp.271-296
    • /
    • 2006
  • The frequency of a traditional tuned liquid column damper (TLCD) depends solely on the length of liquid column, which imposes certain restrictions on its application to long span cable-stayed bridges during construction. The configuration of a cable-stayed bridge varies from different construction stages and so do its natural frequencies. It is thus difficult to apply TLCD with a fixed configuration to the bridge during construction or it is not economical to design a series of TLCD with different liquid lengths to suit for various construction stages. Semi-active tuned liquid column damper (SATLCD) with adaptive frequency tuning capacity is studied in this paper for buffeting response control of a long span cable-stayed bridge during construction. The frequency of SATLCD can be adjusted by active control of air pressures inside the air chamber at the two ends of the container. The performance of SATLCD for suppressing combined lateral and torsional vibration of a real long span cable-stayed bridge during construction stage is numerically investigated using a finite element-based approach. The finite element model of SATLCD is also developed and incorporated into the finite element model of the bridge for predicting buffeting response of the coupled SATLCD-bridge system in the time domain. The investigations show that with a fixed container configuration, the SATLCD with adaptive frequency tuning can effectively reduce buffeting response of the bridge during various construction stages.

ER유체의 역학적 특성이 반능동 현가시스템에 미치는 영향 (Influence of Bingham Characteristics for ER Fluid on Semi-Active Suspension System)

  • 김옥삼;김일겸;조남철;박우철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.434-440
    • /
    • 2004
  • The electro-rheological fluids for semi-active suspension system are a class of colloidal dispersion which exhibit large reversible changes in their rheological behavior when they are subjected to external electrical fields. This paper presents Bingham properties of ER fluids subjected to temperature variations. In addition, an appropriate size of the ER damper for a passenger car is proposed to investigate the effects of Bingham characteristics on the damping performance. The filed-dependent damping forces are evaluated according to the temperature variation and sedimentation ratio.

연속 가변 댐퍼에 의한 반능동 현가장치의 고 자유도 제어기 (High Tunable Control Algorithm for Semi-active Suspension by a Normal Type CDC Damper)

  • 최주용
    • 제어로봇시스템학회논문지
    • /
    • 제16권11호
    • /
    • pp.1096-1103
    • /
    • 2010
  • This paper proposes CDC (Continuous Damping Control) algorithm and verifies in multi-body dynamic vehicle. In order to distinguish a road profile on driving, waviness calculated by the filtered vertical-accelerations of sprung and unsprung masses is introduced. Sky-hook control is used at a low waviness road and constant damping level control is used at a high waviness road, where the hard damping level is determined by waviness, roll rate, acceleration, and deceleration. The damping levels of ride, anti-roll, anti-squat, and anti-dive modules are calculated by tuning parameters which is dependent upon vehicle velocity. Therefore this high tunable algorithm is useful to improve the ride and handling performance under various driving conditions. In the simulations, tire and dampers are modelled by SWIFT (Short Wavelength Intermediate Frequency Tire) model and 1st order delay model, and results are compared with conventional damper's.

ER 유체를 이용한 상용차 운전석의 반능동형 현가 장치 (A Semi-Active Suspension Using ER Fluids for a Commercial Vehicle Seat)

  • 최정환;남무호;최승복;정재천
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.394-399
    • /
    • 1997
  • This paper presents a new concept of a semi-active suspension system for a commercial vehicle seat. The proposed suspension system features an ER(electro-rheological) damper which can produce continuously tunable damping forces by control electric fields. A dynamic model of the ER damper is first achieved by incorporating Bingham property of the ER fluid, followed by the formulation of governing equations of motion for the suspension system. A sliding mode controller is then designed on the basis of the hyper-plane sliding mode scheme. The effectiveness of the proposed control system is evaluated by investigating control performance for vibration isolation.

  • PDF