• Title/Summary/Keyword: Semi-Solid Forming

Search Result 89, Processing Time 0.029 seconds

The Effect of globule size on the Mechanical Properties in Reheating Process of Aluminium Alloys (알루미늄소재의 재가열 공정에서 구상화의 크기가 기계적 성질에 미치는 영향)

  • 박상문;강충길
    • Transactions of Materials Processing
    • /
    • v.11 no.2
    • /
    • pp.155-164
    • /
    • 2002
  • One of the important steps on semi-solid forming Is the reheating process of raw materials to the semi-solid state. This Process is not only necessary to achieve the required SSM billet state, but also to contro1 the microstructure of the billet. In reheating process, the globule size is determined by the holding time of last heating stage. Therefore, some experiments to investigate the relationship between the mechanical properties and the holding time in the last heating stage was performed. The alloys used in this experiment were 357, 319 and A390 alloys. The experiments of reheating were performed by using an Induction heating system with the capacity of 50kw. This paper shows the evolution of the microstructure according to the holding time of last reheating stage. Furthermore, to evaluate the effect of globule size controlled by holding time in last heating stage uniaxial tension test was performed. The strain-stress curves were plotted according to the holding time.

Yield and Compression Behavior of Semi-Solid Material by Upper Bound Method (상계법에 의한 반융용 재료의 항복과 압축거동)

  • 최재찬;박형진;박준홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.195-198
    • /
    • 1995
  • In Semi-Solid Forging, it is necessary to control the forming variables accurately in order to make near-net-shape products. Generally, the defects of products may occur due to liquid segregation which can be caused by the degree of deformation and condition of friction in Semi-Solid Forging, where the segregation is to be predicted by flow analysis. This paper presents the feasibility of theoretical analysis model using the new yield function which is proposed by Doraivelu et al. to the flow analysis of the semi-solid dendritic Sn-15%Pb alloys instead of adopting the yield criterion of Shima & Oyane which is used by Charreyron and usefulness of the adopted yield function. The distribution of the liquid fraction at various strains in radial direction and the influence of friction are estimated by Upper Bound Method.

  • PDF

Yield and Compression Behavior of Semi-Solid Materials by Upper-Bound Method (상계법에 의한 반용융 재료의 항복과 압축거동)

  • 최재찬;박형진;박준홍
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.139-144
    • /
    • 1998
  • In Semi-Solid Forging, it is necessary to control the forming variables accurately in order to make near-net-shape products. Generally, the defects of products may occur due to liquid segregation which can be caused by the degree of deformation and strain rate, and condition of friction in Semi-Solid Forging, where the segregation is to be predicted by flow analysis. This paper presents the feasibility of theoretical analysis model using the new yield function for compressible P/M materials which is proposed by Doraivelu et at. to the flow analysis of the semi-solid dendritic Sn-15%Pb alloys instead of adopting the yield criterion of Shima and Oyane which is used by Charreyron and Flemings. The simple compression process is taken into consideration as the model to confirm the usefulness of the adopted yield function. The distribution of the liquid fraction at various strains and strain rates in radial direction, and the influence of friction are estimated by upper-bound method.

  • PDF

Compression D/B for Liquid Segregation Control in Semi-Solid Forming Process and Its Application (반용융 성형공정에 있어서 액상편석제어를 위한 압축 D/B 및 응용)

  • 정경득
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.06a
    • /
    • pp.15-32
    • /
    • 1999
  • A relationship between stress and stain is very important to design a die to avoid defects of products during semi-solid forming process. Since the liquid will be of eutectic composition in alloys liquid segregation will result in significant or undesirable situation. The materials used in this experiment are A 357. A390, Al2024 alloys that is fabricated by the electro-magnetic stirring process from Pechiney in France. The compression test was performed by induction heating equipment and MTS. In order to prevent the liquid segregation these measured temperature would be useful to control of strain rate during compression test. The liquid segregation is controlled as change of the strain rate and solid fraction during the compression process, The characteristics of flow between solid and liquid phase considering liquid segregation is examined through the above experiments. In the case of medium and high volume fractions of solid the distribution of strain rate is calculated by using compression test data of semi-solid materials (SSM). The thixoforming experiments with the designed die are carried out successfully. The die filling patterns of SSM for variation of die temperature and pressing force have been investigated. The hardness of the thixoformed scroll products is evaluated in terms of the microstructure for each position.

  • PDF

Dynamics Simulation of Solid Particles in Compression Deformation of Rheology Material (레오로지 소재의 압축변형시 고상입자 거동의 동역학 해석)

  • Lee, C.S.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.15 no.5 s.86
    • /
    • pp.395-401
    • /
    • 2006
  • It is reported that semi-solid forming process takes many advantages over the conventional forming process, such as a long die life, good mechanical properties and energy saves. It is important to predict the deformation behavior for optimization of the forging process with semi-solid materials and to control liquid segregation for mechanical properties of materials. But rheology material has thixotropic, pseudo-plastic and shear-thinning characteristics. So, it is difficult for a numerical simulation of the rheology process to be performed because complicated processes such as the filling to include the state of the free surface and solidification in the phase transformation must be considered. General plastic or fluid dynamic analysis is not suitable for the analysis of the rheology material behavior. Recently, molecular dynamics is used for the behavior analysis of the rheology material and turned out to be suitable among several methods. In this study, molecular dynamics simulation was performed for the control of liquid segregation, forming velocity, and viscosity in compression experiment as a part of study on the analysis of rheology forming process.

Optimal Reheating Condition of Semi-solid Material in Semi-solid Forging by Neural Network

  • Park, Jae-Chan;Kim, Young-Ho;Park, Joon-Hong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.2
    • /
    • pp.49-56
    • /
    • 2003
  • As semi-solid forging (SSF) is compared with conventional casting such as gravity die-casting and squeeze casting, the product without inner defects can be obtained from semi-solid forming and globular microstructure as well. Generally, SSF consists of reheating, forging, and ejecting processes. In the reheating process, the materials are heated up to the temperature between the solidus and liquidus line at which the materials exists in the form of liquid-solid mixture. The process variables such as reheating time, reheating temperature, reheating holding time, and induction heating power has large effect on the quality of the reheated billets. It is difficult to consider all the variables at the same time for predicting the quality. In this paper, Taguchi method, regression analysis and neural network were applied to analyze the relationship between processing conditions and solid fraction. A356 alloy was used for the present study, and the learning data were extracted from the reheating experiments. Results by neural network were in good agreement with those by experiment. Polynominal regression analysis was formulated using the test data from neural network. Optimum processing condition was calculated to minimize the grain size and solid fraction standard deviation or to maximize the specimen temperature average. Discussion is given about reheating process of row material and results are presented with regard to accurate process variables fur proper solid fraction, specimen temperature and grain size.

The Effect of Gate Shape for Semi-Solid Forging Die on the Filling Limitation (반용융 단조금형의 Gate 형상이 성형성에 미치는 영향)

  • Son Y. I.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.178-184
    • /
    • 2000
  • To obtain high quality component with thixoforming process, it is important that the homegeneous distribution of solid particles without liquid segregation. In closed-die semi-solid forging process, liquid segregation is strongly affected by injection velocity than any other process variables because the material has to travel relatively long distance to fill the cavity through a narrow gate before solidification begins. The optimal injection velocity and die temperature were investigated to fabricate near-net-shape compressor component called Al frame.

  • PDF

The Influence of Compression Holding Step on Mechanical Properties of Products in Closed-Die Compression Process for Semi-Solid Material (반융용 재료의 밀폐 압축 공정에서 가압유지 단계가 제품의 기계적 성질에 미치는 영향)

  • 최재찬;박형진;이병목
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.199-203
    • /
    • 1995
  • The technology of Semi-Solid Forging (SSF) has been actively developed to fabricate near-net- shape products using light and hardly formable materials, the SSF process is composed of slug heating, forming, compression holding and ejecting step. After forming step in SSF, the slug is compressed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. The compression holding time that can affect mechanical properties and shape of products is important to make decision, where it is necessary to find overall hert transfer coefficeient properly which has large effect on heat transfer between slug and die. This paper presents the procedure to predict compression holding time of octaining the final shaped part with information of temperature and solid fraction for a cylindrical slug at compression hoiding step in closed-die compression process using heat transfer analysis considering latent heat by means of finite element method. The influence of the predicted compression hoiding time on mechanical properties of products is finally investigated by experiment.

  • PDF

Microstructural Characteristics by Compression Holding Time in Semi-Solid Forging (반용융 단조에서 가압유지 시간에 의한 미세조직의 특성)

  • 최재찬;박형진;이병목
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.06a
    • /
    • pp.174-182
    • /
    • 1997
  • The technology of Semi-Solid Forging (SSF) has been actively developed to fabricate near-net-shape products using light and hardly formable materials. Generally, the SSF process is composed of slug heating, forming, compression -holding and ejecting step. After forming step in SSF, the slug is compressed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. The compression holding time that can affect microstructural characteristics and shape of products is important to make decision, where it is necessary to find overall heat transfer coefficient properly which has large effect on heat transfer between slug and die. This paper presents the procedure to predict compression holding time of obtaining the final shaped part with information of temperature and solid fraction for a cylindrical slug at compression holding step in closed-die compression process using heat transfer analysis considering latent heat by means of finite element method. The influence of the predicted compression holding time on microstructural characteristics of products is finally investigated by experiment.

  • PDF

A Study on the Optimum Reheating Profess of A356 Alloy in Semi-Solid Forming (반용융 성형에서 A356합금의 최적 재가열 과정에 대한 연구)

  • Yoon, Jae-Min;Park, Joon-Hong;Kim, Young-Ho;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.114-125
    • /
    • 2002
  • As semi-solid forging (SSF) is compared with conventional easting such as gravity die-easting and squeeze casting, the product without inner defects can be obtained from semi-solid forming and globular microstructure as well. Generally speaking. SSF consists of reheating, forging, ejecting precesses. In the reheating process, the materials are heated up to the temperature between the solidus and liquidus line at which the materials exists in the form of liquid-solid mixture. The process variables such as reheating time, reheating temperature, reheating holding time, and induction heating power have much effect on the quality of the reheated billets. It is difficult to consider all the variables at the same time when predicting the quality. In this paper, Taguchi method, regression analysis and neural network were applied to analyze the relationship between processing conditions and solid fraction. A356 alloy was used for the present study, and the learning data were extracted by the reheating experiments. Results by neural network were on good agreement with those by experiment. Polynominal regression analysis was formulated by using the test data from neural network. Optimum processing condition was calculated to minimize the grain size, solid fraction standard deviation, otherwise, to maximize the specimen temperature average. In this time, discussion is liven about reheating process of row material and results are presented with regard to accurate process variables for proper solid fraction, specimen temperature and grain size.