• Title/Summary/Keyword: Semi-Solid Alloy

Search Result 110, Processing Time 0.027 seconds

Effect of Pouring Temperature on the Casting Characteristics and Microstructure of Twin-roll Cast BCuP Alloy (BCuP계 합금의 쌍롤주조시 주조특성과 미세조직에 미치는 주입온도의 영향)

  • Joo, Dae-Heon;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.21 no.4
    • /
    • pp.232-238
    • /
    • 2001
  • Experimental study on the twin roll strip casting of BCuP-5(Cu-15wt%Ag-wt5%P) alloy was carried out using laboratory scale horizontal type twin roll caster. In this study, among the various operating parameters, such as tundish angle, contact angle, pouring temperature, roll speed, presetting gap of the rolls and kinds of roll and tundish materials, effect of pouring temperature for strip casting of BCuP-5 alloy which has long freezing range of about $170^{\circ}C$ was mainly investigated. BCuP-5 alloy strip was successfully produced when pouring molten metal at lower temperature than its liquidus temperature. Microstructure of the cast strip consists of primary Cu and eutectic. Especially the size of primary Cu phase increased with decreasing of pouring temperature.

  • PDF

Microstructural evolution of primary solid particles and mechanical properties of AI-Si alloys by rheocasting (AI-Si계 리오캐스팅합금의 초정입자의 응고조직 및 기계적성질)

  • Lee, J.I.;Lee, H.I.;Ryoo, Y.H.;Kim, D.H.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.244-252
    • /
    • 1994
  • The morphological changes of primary solid particles as a fuction of process time on Al-Si alloys during semi-solid state processing with a shear rate of 200s were studied. In hypereutectic Al-15.5wt%Si alloy, it was observed that primary Si crystals are fragmented in the early stage of stirring and morphologies of primary Si crystals change from faceted to spherical during isothermal shearing for 60 minutes. In quaternary Al-12.5wt%Si-2.9wt%Cu-0.7wt%Mg alloy system, it was observed both primary silicon and ${\alpha}$-alumunum particles. Microstructural evolution of primary Si crystals was similar to that of the hypereutectic Al-Si alloy but equiaxed ${\alpha}$-Al dendrites are broken into nearly spherical at the early stage of shearing and later stage of the isothermal shearing ${\alpha}$- Al particles are slightly coarsoned by Ostwald ripening. Mechanical properties of Al-Si-Cu-Mg alloy were compared to those from other processes (squeeze casting and gravity casting). After T6 heat treatment, comparable values of hardness were obtained while slightly lower compressive strength values were observed in rheocast alloy. The elongation, on the other hand, exhibited significant increasement of 15% over gravity cast alloy.

  • PDF

Microstructural evolution of rheocast Al-6.2wt.%Si alloy with isothermal stirring (Al-6.2wt.%Si 합금의 등온교반시간에 따른 미세조직변화)

  • Lee, Jung-Ill;Park, Ji-Ho;Kim, Gyeung-Ho;Lee, Ho-In
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.514-522
    • /
    • 1995
  • The microstructural evolution with isothermal stirring during semi-solid state processing of hypoeutectic Al-6.2wt%Si alloy was studied. Substructure of the individual primary solid particle in the slurry was investigated through transmission electron microscopy(TEM). Formation of subgrain boundaries on the rheocast Al-6.2wt%Si alloy is observed and the misorientation between the grains is shown typically under 2 degrees by analyzing selected area diffraction (SAD) and convergent beam electron diffraction (CBED) patterns. The existence of high angle grain boundaries are also observed in the alloy. Based upon these observations, mechanisms for the primary particles fragmentation are considered. With isothermal stirring, the dislocation density increases, and the evolution of dislocation cell structure takes place, which is interpreted as a process of achieving uniform deformation by dynamic recovery under applied shear stress.

  • PDF

Post-heat Treatment Properties of Thixoformed of A357 Al Alloy Product (반응고 성형된 A357 Al 합금 성형품의 후열처리 특성)

  • Choi, W.H.;Shin, P.W.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.1
    • /
    • pp.16-25
    • /
    • 2003
  • Recently, semi-solid forming (SSF) Process has been applied in many automobile parts for improved weight reduction, better environmental protection and energy savings. SSF process was well developed for high volume production of light weight aluminum components. In this paper, knuckle has been manufactured by SSF and then the microstructures and mechanical properties were investigated followed by various heat-treatment conditions. It was found that the examined microstructure was equiaxed at the whole cross-section area.

Effect of the Extrusion Ratios on Fiber Breakage and Orientation in Hot Extrusion Process in Metal Matrix Composites (금속복합재료의 열간압출공정에 있어서 압출비가 섬유의 파단 및 배향에 미치는 영향)

  • Kang, C.G.;Kang, S.S.;Kim, B.H.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1740-1750
    • /
    • 1993
  • The aluminar short fiber reinforced composite materials for hot extrusion were fabricated by semi-solid stirring method, and extruded at extrusion temperature $400^{\circ}C$ with various extrusion ratio. The hot extrusion load of volume fraction 15% metal matrix composites and base alloy Al7075 has been compared. The fiber length distribution, fiber breakage and fiber orientation are investiged to know the fiber behaviour in before and after hot extrusion. The tensile strength of the hot extruded billet are experimentally determined for different of extrusion ratios, and compared with theorically calculated strength.

The grain size control of A356 alloy by electromagnetic stirring (전자교반을 이용한 A356 합금의 결정립제어)

  • Bae J.W.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.247-248
    • /
    • 2006
  • In this study, the morphology of the change of primary Al phase in A356 alloy by two kinds of electromagnetic stirrers(vertical and horizontal) were investigated to obtain the globular structure. The effects of the stirring current, the stirring time and the pouring temperature were determined. The greater stirring current and longer stirring time were to get the finer the Al phase. However, over a certain stirring current and stirring time, the primary Al was merged together and was increased. The reason is the degree of breakdown of initial dendrites has been decreased by the collision and coalescence of particles with increasing stirring current and stirring time. The optimum conditions and difference of the two kinds of electromagnetic stirrers have been investigated for rheology forming with controlled solid fraction.

  • PDF

Molecular Dynamics Simulation of Nano-Deformation Behavior of the Grain-Size Controlled Rheology Material (분자동력학을 이용한 결정립 제어 레오로지 소재의 나노 변형거동 전산모사)

  • Kim J. W.;Youn S. W.;Kang C. G.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.319-326
    • /
    • 2005
  • In this study, the nano-deformation behavior of semi-solid Al-Si alloy was investigated using a molecular dynamics simulation as a part of the research on the surface crack behavior in thixoformed automobile parts. The microstructure of the grain-size controlled Al-Si alloy consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary phase of the grain-size controlled Al-Si alloy were investigated through the molecular dynamics simulation. The primary phase was assumed to be single crystal aluminum. It was shown that the vacancy occurred at the zone where silicon molecules were.

Interfacial Characteristics of $Al-2024/Al_2O_{3p}$ Composite Fabricated by Rheo-compocasting (Rheo-compocasting법으로 제조된 알루미나 입자강화 Al합금 복합재료의 계면반응)

  • Hyun, Suhk-Jong;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.13 no.3
    • /
    • pp.285-294
    • /
    • 1993
  • Aluminum alloy 2024 matrix composites reinforced with $Al_2O_3$ particles, were prepared by rheo-compocasting, a process which consists of the incoporation distribution of reinforcement by stirring within a semi-solid alloy. The microstructures and characteristics of the interfaces have been studied using optical microscope and scanning electon microscope in 2024 aluminum alloy composites reinforced with $Al_2O_3$ particles. The main results are as follows: (1) $Al_2O_3$ particles were well distributed in composites by using rheo-compocasting. (2) As the addition of $Al_2O_3$ particle increases, the average dendrite numbers and the hardness were increased. (3) Interaction between $Al_2O_3$ particles and alloy 2024 resulted in the formation of Mg and Cu element rich region around the $Al_2O_3$ particles.

  • PDF

The Effect of Ca Addition on the Grain Growth Inhibition During Reheating Process of Al-Zn-Mg Al Alloys for Thixo-extrusion (반응고 Al-Zn-Mg계 합금의 반용융 압출을 위한 재가열 시 결정립 성장 억제에 미치는 Ca 첨가의 영향)

  • Park, Hyung-Won;Kim, Dae-Hwan;Shim, Sung-Yong;Kim, Hee-Kyung;Seong, Bong-Hak;Choi, Chang-Ock;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.31 no.6
    • /
    • pp.347-353
    • /
    • 2011
  • There is thixo-extrusion to form high strength aluminum alloy. But, it is a problem that grains become grain coarsening during reheating process because the alloy was exposed at high temperature. In order to solve grain growth during reheating process, calcium was added in Al-Zn-Mg alloys. Primary a grain sizes of semi-solid Al-Zn-Mg-(0, 0.4, 0.6 and 0.9, wt.%)Ca were measured with image analyzer after reheating. Measured primary a grain sizes were applied to LSW(Lifshitz-Slyozov and Wagner) equation to check the effect of Ca on grain coarsening. Coarsening rate constant K values of semi-solid Al-Zn-Mg-(0, 0.4, 0.6 and 0.9, wt.%)Ca alloys were $371\;mm^3s^{-1}$, $247\;mm^3s^{-1}$, $198\;mm^3s^{-1}$ and $166 mm^3s^{-1}$, respectively. As increasing calcium content, K value decreased which means grains are refined. Also, grains of calcium addition were more spherical than that of calcium free.

Influence of Melt Processing Factors on Microstructures of SiCp/Ma-Al Composites (SiCp/Mg-Al 복합재료의 조직에 미치는 용융가공의 영향)

  • Yoon, Yeo-Chang;Choi, Jeong-Cheol;Nam, Tae-Woon;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.13 no.4
    • /
    • pp.359-368
    • /
    • 1993
  • Mg-9wt.%Al and Mg-9wt.%-1.6wt%Zn/SiCp(particle size $40{\mu}m$) metal-matrix-composite specimens were manufactured by rheo-compocasting method, known for its effect of improving the wettability. The ceramic reinforcement particles(SiCp) were dispersed in the semi-solid magnesium alloy matrix slurry being vigorously stirred in a high frequency induction furnace under inert atmosphere. A microstructural study of the dispersed particles in the specimens, prepared under different conditions as regards the time(10min, 20min, 30min) and temperature of the stirring, was made with the aid of optical microscope and SEM. The effect of superheating was also observed. It is revealed that 30 minutes' stirring time of the semi-solid at 40% solid fraction temperature(Mg-9wt.%Al : $590^{\circ}C$, AZ91 : $576^{\circ}C$), as determined by the lever rule, gives a satisfactorily uniform distribution of the particles. The superheating is observed to enhance further the uniformity.

  • PDF