• Title/Summary/Keyword: Semi-Automatic

Search Result 412, Processing Time 0.031 seconds

Semi-Automatic Method for Constructing 2D and 3D Indoor GIS Maps based on Point Clouds from Terrestrial LiDAR (지상 라이다의 점군 데이터를 이용한 2차원 및 3차원 실내 GIS 도면 반자동 구축 기법 개발)

  • Hong, Sung Chul;Jung, Jae Hoon;Kim, Sang Min;Hong, Seung Hwan;Heo, Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 2013
  • In rapidly developing urban areas that include high-rise, large, and complex buildings, indoor and outdoor maps in GIS become a basis for utilizing and sharing information pertaining to various aspects of the real world. Although an indoor mapping has gained much attentions, research efforts are mostly in 2D and 3D modeling of terrain and buildings. Therefore, to facilitate fast and accurate construction of indoor GIS, this paper proposes a semi-automatic method consisting of preprocessing, 2D mapping, and 3D mapping stages. The preprocessing is designed to estimate heights of building interiors and to identify noise data from point clouds. In the 2D mapping, a floor map is extracted with a tracing grid and a refinement method. In the 3D mapping, a 3D wireframe model is created with heights from the preprocessing stage. 3D mesh data converted from noise data is combined with the 3D wireframe model for detail modeling. The proposed method was applied to point clouds depicting a hallway in a building. Experiment results indicate that the proposed method can be utilized to construct 2D and 3D maps for indoor GIS.

A Korean Product Review Analysis System Using a Semi-Automatically Constructed Semantic Dictionary (반자동으로 구축된 의미 사전을 이용한 한국어 상품평 분석 시스템)

  • Myung, Jae-Seok;Lee, Dong-Joo;Lee, Sang-Goo
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.6
    • /
    • pp.392-403
    • /
    • 2008
  • User reviews are valuable information that can be used for various purposes. In particular, the product reviews on online shopping sites are important information which can directly affect the purchasing decision of the customers. In this paper, we present our design and implementation of a system for summarizing the customer's opinion and the features of each product by analyzing reviews on a commercial shopping site. During the analysis process, several natural language processing(NLP) techniques and the semantic dictionary were used. The semantic dictionary contains vocabularies that are used to express product features and customer's opinions. And it was constructed in semi-automatic way with the help of the tool we implemented. Furthermore, we discuss how to handle the vocabularies that have different meanings according to the context. We analyzed 1796 reviews about 20 products of 2 categories collected from an actual shopping site and implemented a novel ranking system. We obtained 88.94% for precision and 47.92% for recall on extracting opinion expression, which means our system can be applicable for real use.

A Development of Semi-automatic Trawl-net Surfaces Reconstruction System using Motion Equations and User Interactions (운동 방정식과 사용자 상호작용을 적용한 반자동 트롤 그물 표면 재구축 시스템 개발)

  • Yoon, Joseph;Park, Keon-Kuk;Kwon, Oh-Seok;Kim, Young-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1447-1455
    • /
    • 2017
  • In a trawl-net simulation, it is very important to process the physical phenomenons resulting from real collisions between a net and fishes. However, because it is very difficult to reconstruct the surface with mass points, many researchers have generally detect the collision using an approximation model employing a sphere, a cube or a cylinder. These approaches occur often result in inaccurate movements of a fish due to the difference between a real-net and a designed-net. So, many systems have manually adjusted a net surface based on actual measurements of mass points. These methods are very inefficient because it needs much times in an adjustment and also causes more incorrect inputs according to a rapid increment in the number of points. Therefore, in this paper, we propose a reconstruction method that it semi-automatically reconstructed trawl-net surfaces using the equation of motion at each mass point in a mass-spring model. To get an easy start in a beginning step of the spread, it enables users to get interactive adjustment on each mass point. We had designed a trawl-net model using geometrical structures of trawl-net and then automatically reconstructed the trawl-net surface using scale-space meshing techniques. Last, we improve the accuracy of reconstructed result by correction user interaction.

TIME VARIATIONS OF THE RADIAL VELOCITY OF H2O MASERS IN THE SEMI-REGULAR VARIABLE R CRT

  • Sudou, Hiroshi;Shiga, Motoki;Omodaka, Toshihiro;Nakai, Chihiro;Ueda, Kazuki;Takaba, Hiroshi
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.6
    • /
    • pp.157-165
    • /
    • 2017
  • $H_2O$ maser emission at 22 GHz in the circumstellar envelope is one of the good tracers of detailed physics and kinematics in the mass loss process of asymptotic giant branch stars. Long-term monitoring of an $H_2O$ maser spectrum with high time resolution enables us to clarify acceleration processes of the expanding shell in the stellar atmosphere. We monitored the $H_2O$ maser emission of the semi-regular variable R Crt with the Kagoshima 6-m telescope, and obtained a large data set of over 180 maser spectra over a period of 1.3 years with an observational span of a few days. Using an automatic peak detection method based on least-squares fitting, we exhaustively detected peaks as significant velocity components with the radial velocity on a $0.1kms^{-1}$ scale. This analysis result shows that the radial velocity of red-shifted and blue-shifted components exhibits a change between acceleration and deceleration on the time scale of a few hundred days. These velocity variations are likely to correlate with intensity variations, in particular during flaring state of $H_2O$ masers. It seems reasonable to consider that the velocity variation of the maser source is caused by shock propagation in the envelope due to stellar pulsation. However, it is difficult to explain the relationship between the velocity variation and the intensity variation only from shock propagation effects. We found that a time delay of the integrated maser intensity with respect to the optical light curve is about 150 days.

A semi-automated method for integrating textural and material data into as-built BIM using TIS

  • Zabin, Asem;Khalil, Baha;Ali, Tarig;Abdalla, Jamal A.;Elaksher, Ahmed
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.127-146
    • /
    • 2020
  • Building Information Modeling (BIM) is increasingly used throughout the facility's life cycle for various applications, such as design, construction, facility management, and maintenance. For existing buildings, the geometry of as-built BIM is often constructed using dense, three dimensional (3D) point clouds data obtained with laser scanners. Traditionally, as-built BIM systems do not contain the material and textural information of the buildings' elements. This paper presents a semi-automatic method for generation of material and texture rich as-built BIM. The method captures and integrates material and textural information of building elements into as-built BIM using thermal infrared sensing (TIS). The proposed method uses TIS to capture thermal images of the interior walls of an existing building. These images are then processed to extract the interior walls using a segmentation algorithm. The digital numbers in the resulted images are then transformed into radiance values that represent the emitted thermal infrared radiation. Machine learning techniques are then applied to build a correlation between the radiance values and the material type in each image. The radiance values were used to extract textural information from the images. The extracted textural and material information are then robustly integrated into the as-built BIM providing the data needed for the assessment of building conditions in general including energy efficiency, among others.

Design and Construction of a Loom for Obtaining Ultra-Light Metal Structure (초경량 금속 구조재 직조장치의 설계 및 제작)

  • Kim, Pan-Su;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1235-1240
    • /
    • 2010
  • Wire-woven Bulk Kagome (WBK) is fabricated by assembling helically formed wires in six directions. To date, WBK samples have been assembled manually. For industrial application, the assembly process must be automated. Furthermore, if WBK is to be fabricated using flexible wires that cannot maintain their helical shape during fabrication, a specialized automatic machine, i.e., a loom needs to be developed. In this work, we designed and constructed a loom for fabricating WBKs using flexible wires. This loom is operated by one rotation of the upper plate, two translations of the insertion device, and insertion of wires. So-called "comb devices" are placed between multiple layers of Kagome nets to prevent the wires that are already in place from getting entangled with those that are being inserted. This loom can be also used to fabricate semi-WBKs composed of helically formed wires and rigid straight wires.

A Fusion Method of Co-training and Label Propagation for Prediction of Bank Telemarketing (은행 텔레마케팅 예측을 위한 레이블 전파와 협동 학습의 결합 방법)

  • Kim, Aleum;Cho, Sung-Bae
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.686-691
    • /
    • 2017
  • Telemarketing has become the center of marketing action of the industry in the information society. Recently, machine learning has emerged in many areas, especially, financial prediction. Financial data consists of lots of unlabeled data in most parts, and therefore, it is difficult for humans to perform their labeling. In this paper, we propose a fusion method of semi-supervised learning for automatic labeling of unlabeled data to predict telemarketing. Specifically, we integrate labeling results of label propagation and co-training with a decision tree. The data with lower reliabilities are removed, and the data are extracted that have consistent label from two labeling methods. After adding them to the training set, a decision tree is learned with all of them. To confirm the usefulness of the proposed method, we conduct the experiments with a real telemarketing dataset in a Portugal bank. Accuracy of the proposed method is 83.39%, which is 1.82% higher than that of the conventional method, and precision of the proposed method is 19.37%, which is 2.67% higher than that of the conventional method. As a result, we have shown that the proposed method has a better performance as assessed by the t-test.

Semi-automatic Camera Calibration Using Quaternions (쿼터니언을 이용한 반자동 카메라 캘리브레이션)

  • Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • The camera is a key element in image-based three-dimensional positioning, and camera calibration, which properly determines the internal characteristics of such a camera, is a necessary process that must be preceded in order to determine the three-dimensional coordinates of the object. In this study, a new methodology was proposed to determine interior orientation parameters of a camera semi-automatically without being influenced by size and shape of checkerboard for camera calibration. The proposed method consists of exterior orientation parameters estimation using quaternion, recognition of calibration target, and interior orientation parameter determination through bundle block adjustment. After determining the interior orientation parameters using the chessboard calibration target, the three-dimensional position of the small 3D model was determined. In addition, the horizontal and vertical position errors were about ${\pm}0.006m$ and ${\pm}0.007m$, respectively, through the accuracy evaluation using the checkpoints.

Semi-automatic Extraction of 3D Building Boundary Using DSM from Stereo Images Matching (영상 매칭으로 생성된 DSM을 이용한 반자동 3차원 건물 외곽선 추출 기법 개발)

  • Kim, Soohyeon;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1067-1087
    • /
    • 2018
  • In a study for LiDAR data based building boundary extraction, usually dense point cloud was used to cluster building rooftop area and extract building outline. However, when we used DSM generated from stereo image matching to extract building boundary, it is not trivial to cluster building roof top area automatically due to outliers and large holes of point cloud. Thus, we propose a technique to extract building boundary semi-automatically from the DSM created from stereo images. The technique consists of watershed segmentation for using user input as markers and recursive MBR algorithm. Since the proposed method only inputs simple marker information that represents building areas within the DSM, it can create building boundary efficiently by minimizing user input.

Novel Intent based Dimension Reduction and Visual Features Semi-Supervised Learning for Automatic Visual Media Retrieval

  • kunisetti, Subramanyam;Ravichandran, Suban
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.230-240
    • /
    • 2022
  • Sharing of online videos via internet is an emerging and important concept in different types of applications like surveillance and video mobile search in different web related applications. So there is need to manage personalized web video retrieval system necessary to explore relevant videos and it helps to peoples who are searching for efficient video relates to specific big data content. To evaluate this process, attributes/features with reduction of dimensionality are computed from videos to explore discriminative aspects of scene in video based on shape, histogram, and texture, annotation of object, co-ordination, color and contour data. Dimensionality reduction is mainly depends on extraction of feature and selection of feature in multi labeled data retrieval from multimedia related data. Many of the researchers are implemented different techniques/approaches to reduce dimensionality based on visual features of video data. But all the techniques have disadvantages and advantages in reduction of dimensionality with advanced features in video retrieval. In this research, we present a Novel Intent based Dimension Reduction Semi-Supervised Learning Approach (NIDRSLA) that examine the reduction of dimensionality with explore exact and fast video retrieval based on different visual features. For dimensionality reduction, NIDRSLA learns the matrix of projection by increasing the dependence between enlarged data and projected space features. Proposed approach also addressed the aforementioned issue (i.e. Segmentation of video with frame selection using low level features and high level features) with efficient object annotation for video representation. Experiments performed on synthetic data set, it demonstrate the efficiency of proposed approach with traditional state-of-the-art video retrieval methodologies.