• Title/Summary/Keyword: Semantic network

Search Result 753, Processing Time 0.025 seconds

Comparing State Representation Techniques for Reinforcement Learning in Autonomous Driving (자율주행 차량 시뮬레이션에서의 강화학습을 위한 상태표현 성능 비교)

  • Jihwan Ahn;Taesoo Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.109-123
    • /
    • 2024
  • Research into vision-based end-to-end autonomous driving systems utilizing deep learning and reinforcement learning has been steadily increasing. These systems typically encode continuous and high-dimensional vehicle states, such as location, velocity, orientation, and sensor data, into latent features, which are then decoded into a vehicular control policy. The complexity of urban driving environments necessitates the use of state representation learning through networks like Variational Autoencoders (VAEs) or Convolutional Neural Networks (CNNs). This paper analyzes the impact of different image state encoding methods on reinforcement learning performance in autonomous driving. Experiments were conducted in the CARLA simulator using RGB images and semantically segmented images captured by the vehicle's front camera. These images were encoded using VAE and Vision Transformer (ViT) networks. The study examines how these networks influence the agents' learning outcomes and experimentally demonstrates the role of each state representation technique in enhancing the learning efficiency and decision- making capabilities of autonomous driving systems.

Climate change messages in the fashion industry discussed at COP28

  • Yeong-Hyeon Choi;Sangyung Lee
    • The Research Journal of the Costume Culture
    • /
    • v.32 no.4
    • /
    • pp.517-546
    • /
    • 2024
  • The aim of this study is to investigate the fashion industry's response to climate change and how these discussions unfolded at the 28th Conference of the Parties (COP28) to the United Nations Framework Convention on Climate Change (UNFCCC). Climate change response projects by B Corp-certified fashion companies are examined, focusing on stakeholder efforts and reviewing online media reports. Text data were collected from web documents, interviews, and op-eds relating to COP28 from December 2018 to April 2024 and analyzed using text mining and semantic network analysis to identify critical keywords and contexts. The analysis revealed that the fashion industry is fulfilling its environmental responsibilities through various strategies, prompting changes in consumer behavior by advocating sustainable consumption, including carbon removal, energy transition, and recycling promotion. Stakeholders in online media and those present at COP28 discussed issues relating to climate change in the fashion industry, focusing on environmental protection, energy, greenhouse gas emissions, sustainable material usage, and social responsibility. Key issues at COP28 included policy and regulation, climate change response, energy transition, carbon emissions management, and environmental, social, and governance (ESG) standards. Additionally, by examining the main collections exhibited at the fashion show during COP28, the study analyzed how messages about climate change were conveyed. Fashion companies communicated the industry's response through exhibitions and fashion shows, suggesting a move toward balancing environmental protection and economic growth through the development of sustainable materials, the expansion of recycling and reuse practices, and the modern reinterpretation of cultural heritage.

A Study on Ontology and Topic Modeling-based Multi-dimensional Knowledge Map Services (온톨로지와 토픽모델링 기반 다차원 연계 지식맵 서비스 연구)

  • Jeong, Hanjo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.79-92
    • /
    • 2015
  • Knowledge map is widely used to represent knowledge in many domains. This paper presents a method of integrating the national R&D data and assists of users to navigate the integrated data via using a knowledge map service. The knowledge map service is built by using a lightweight ontology and a topic modeling method. The national R&D data is integrated with the research project as its center, i.e., the other R&D data such as research papers, patents, and reports are connected with the research project as its outputs. The lightweight ontology is used to represent the simple relationships between the integrated data such as project-outputs relationships, document-author relationships, and document-topic relationships. Knowledge map enables us to infer further relationships such as co-author and co-topic relationships. To extract the relationships between the integrated data, a Relational Data-to-Triples transformer is implemented. Also, a topic modeling approach is introduced to extract the document-topic relationships. A triple store is used to manage and process the ontology data while preserving the network characteristics of knowledge map service. Knowledge map can be divided into two types: one is a knowledge map used in the area of knowledge management to store, manage and process the organizations' data as knowledge, the other is a knowledge map for analyzing and representing knowledge extracted from the science & technology documents. This research focuses on the latter one. In this research, a knowledge map service is introduced for integrating the national R&D data obtained from National Digital Science Library (NDSL) and National Science & Technology Information Service (NTIS), which are two major repository and service of national R&D data servicing in Korea. A lightweight ontology is used to design and build a knowledge map. Using the lightweight ontology enables us to represent and process knowledge as a simple network and it fits in with the knowledge navigation and visualization characteristics of the knowledge map. The lightweight ontology is used to represent the entities and their relationships in the knowledge maps, and an ontology repository is created to store and process the ontology. In the ontologies, researchers are implicitly connected by the national R&D data as the author relationships and the performer relationships. A knowledge map for displaying researchers' network is created, and the researchers' network is created by the co-authoring relationships of the national R&D documents and the co-participation relationships of the national R&D projects. To sum up, a knowledge map-service system based on topic modeling and ontology is introduced for processing knowledge about the national R&D data such as research projects, papers, patent, project reports, and Global Trends Briefing (GTB) data. The system has goals 1) to integrate the national R&D data obtained from NDSL and NTIS, 2) to provide a semantic & topic based information search on the integrated data, and 3) to provide a knowledge map services based on the semantic analysis and knowledge processing. The S&T information such as research papers, research reports, patents and GTB are daily updated from NDSL, and the R&D projects information including their participants and output information are updated from the NTIS. The S&T information and the national R&D information are obtained and integrated to the integrated database. Knowledge base is constructed by transforming the relational data into triples referencing R&D ontology. In addition, a topic modeling method is employed to extract the relationships between the S&T documents and topic keyword/s representing the documents. The topic modeling approach enables us to extract the relationships and topic keyword/s based on the semantics, not based on the simple keyword/s. Lastly, we show an experiment on the construction of the integrated knowledge base using the lightweight ontology and topic modeling, and the knowledge map services created based on the knowledge base are also introduced.

Analysis of Teachers' Perceptions on the Subject Competencies of Integrated Science (통합과학 교과 역량에 대한 교사들의 인식 분석)

  • Ahn, Yumin;Byun, Taejin
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.2
    • /
    • pp.97-111
    • /
    • 2020
  • In the 2015 revised curriculum, 'Integrated Science' was established to increase convergent thinking and designated as a common subject for all students to learn, regardless of career. In addition, the 2015 revised curriculum introduced 'competence' as a distinctive feature from the previous curriculum. In the 2015 revised curriculum, competencies are divided into core competencies of cross-curricular character and subject competencies based on academic knowledge and skills of the subject. The science curriculum contains five subject competencies: scientific thinking, scientific inquiry, scientific problem solving, scientific communication, scientific participation and life-long learning. However, the description of competencies in curriculum documents is insufficient, and experts' perceptions of competencies are not uniform. Therefore, this study examines the perceptions of science subjects in science high school teachers by deciding that comprehension of competencies should be preceded in order for competency-based education to be properly applied to school sites. First, we analyzed the relationship between achievement standards and subject competencies of integrated science through the operation of an expert working group with a high understanding of the integrated science achievement standards. Next, 31 high school science teachers examined the perception of the five subject competencies through a descriptive questionnaire. The semantic network analysis has been utilized to analyze the teachers' responses. The results of the analysis showed that the three curriculum competencies of scientific inquiry, scientific communication, scientific participation and life-long learning ability are similar to the definitions of teachers and curriculum documents, but in the case of scientific thinking and scientific problem solving, there are some gaps in perception and definition in curriculum documents. In addition, the results of the comprehensive analysis of teachers' perceptions on the five competencies show that the five curriculum competencies are more relevant than mutually exclusive or independent.

Investigations on Techniques and Applications of Text Analytics (텍스트 분석 기술 및 활용 동향)

  • Kim, Namgyu;Lee, Donghoon;Choi, Hochang;Wong, William Xiu Shun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.471-492
    • /
    • 2017
  • The demand and interest in big data analytics are increasing rapidly. The concepts around big data include not only existing structured data, but also various kinds of unstructured data such as text, images, videos, and logs. Among the various types of unstructured data, text data have gained particular attention because it is the most representative method to describe and deliver information. Text analysis is generally performed in the following order: document collection, parsing and filtering, structuring, frequency analysis, and similarity analysis. The results of the analysis can be displayed through word cloud, word network, topic modeling, document classification, and semantic analysis. Notably, there is an increasing demand to identify trending topics from the rapidly increasing text data generated through various social media. Thus, research on and applications of topic modeling have been actively carried out in various fields since topic modeling is able to extract the core topics from a huge amount of unstructured text documents and provide the document groups for each different topic. In this paper, we review the major techniques and research trends of text analysis. Further, we also introduce some cases of applications that solve the problems in various fields by using topic modeling.

Study on Application of Big Data in Packaging (패키징(Packaging) 분야에서의 빅데이터(Big data) 적용방안 연구)

  • Kang, WookGeon;Ko, Euisuk;Shim, Woncheol;Lee, Hakrae;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.23 no.3
    • /
    • pp.201-209
    • /
    • 2017
  • The Big Data, the element of the Fourth Industrial Revolution, is drawing attention as the 4th Industrial Revolution is mentioned in the 2016 World Economic Forum. Big Data is being used in various fields because it predicts the near future and can create new business. However, utilization and research in the field of packaging are lacking. Today packaging has been demanded marketing elements that effect on consumer choice. Big data is actively used in marketing. In the marketing field, big data can be used to analyze sales information and consumer reactions to produce meaningful results. Therefore, this study proposed a method of applying big data in the field of packaging focusing on marketing. In this study suggest that try to utilize the private data and community data to analyze interaction between consumers and products. Using social big data will enable to understand the preferred packaging and consumer perceptions and emotions in the same product line. It can also be used to analyze the effects of packaging among various components of the product. Packaging is one of the many components of the product. Therefore, it is not easy to understand the impact of a single packaging element. However, this study presents the possibility of using Big Data to analyze the perceptions and feelings of consumers about packaging.

Meta-analysis of Site Distribution and Researcher Network of the Korean Society of Limnology: 1968~2017 (한국 육수학 연구지 분포의 메타분석과 연구자 네트워크 변화: 1968~2017)

  • Kim, Ji Yoon;Joo, Gea-Jae;Do, Yuno
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.1
    • /
    • pp.124-134
    • /
    • 2018
  • We analyzed research topics, temporal distribution of field sites, and researcher network of 1,508 limnology publications in the Korean Journal of Limnology (1968~2012) and the Korean Journal of Ecology and Environment (2013~2017). We found that water quality and sediment, phytoplankton, invertebrates, and fish were major subjects during the study periods. Survey of flora and fauna and physiological experiment of freshwater species were the largest subjects during 1970~80s, while other subjects including production, behavior, modeling, and ecological assessment have been rapidly increased since the 1990s. Most of the biological taxa equally studied lotic and lentic system, however, invertebrates and fish related studies more focused on the lotic system. Spatially, the field site of Korean limnology studies was found to be concentrated in main river channels runs through urban areas and artificial lakes than preserved natural areas. Freshwater system, located at the elevation range of 301~400 m (upstream of main channels), had the lowest number of field sites. Collaboration among researchers and different institution types have been steadily increased and expanded as the number of publications increased.

The Characteristics of Earth System Thinking of Science Gifted Students in relation to Climate Changes (기후변화와 관련된 과학영재들의 지구시스템 사고 특성)

  • Park, Kyeong-Jin;Chung, Duk-Ho
    • Journal of Gifted/Talented Education
    • /
    • v.24 no.2
    • /
    • pp.271-288
    • /
    • 2014
  • This study aimed to investigate the perception of earth system thinking of science gifted students in future problem solving (FPS) in relation to climate changes. In order to this study, the research problem associated with climate changes was developed through a literature review. The thirty seven science gifted students participated in lessons. The ideas in problem solving process of science gifted students were analyzed using the semantic network analysis method. The results are as follows. In the problem solving processes, science gifted students are 'changes of the sunlight by water layer', 'changes of the Earth's temperature', 'changes of the air pressure', ' change of the wind and weather' were represented in order. On other hand, regard to earth system thinking for climate changes, while science gifted students were used sub components related to atmospheres frequently, they were used sub components related to biosphere, geosphere, and hydrosphere a little. But, the analytical results of the structural relationship between the sub components related to earth system, they were recognised that biosphere, geosphere, and hydrosphere used very important in network structures. In conclusion, science gifted students were understood well that components of the earth system are influencing each other.

A refinement of customer satisfactory factors in multimedia contentware evaluation process - focused on company website design - (멀티미디어 컨텐트웨어 상품에 대한 소비자 감성 평가 요소(문화성 인자)추출에 관한 연구 - 기업 웹사이트를 중심으로 -)

  • 이종호;김명석;이현이;김태균
    • Archives of design research
    • /
    • v.11 no.1
    • /
    • pp.291-302
    • /
    • 1998
  • This paper covers the development process of multimedia evaluation system, especially focused on customer satisfactory factors while customers navigating net-based Interactive multimedia system. Customers usually experience new level of interaction cased by newly developed web-based technology In ordinary multimedia system. However, if it gives customers satisfactory experience is a matter of question. To find out the relationship between customer satisfaction and interactivity factors exposed by multimedia system, a model has been developed which describes the structure of web-based multimedia system and its relation to customer satisfactory factors. Five different experiments, including 'semantic differential', 'focus group interview', and 'expert review', has been conducted and four customer satisfactory factors were identified. Those are 'customery value', 'structural perfectness', 'visual perfectness', and 'contemporaneity'. With these factors and newly delveoped evaluation system, 7 different web-site has been evaluated and analyzed at the end of this report.

  • PDF

A News Video Mining based on Multi-modal Approach and Text Mining (멀티모달 방법론과 텍스트 마이닝 기반의 뉴스 비디오 마이닝)

  • Lee, Han-Sung;Im, Young-Hee;Yu, Jae-Hak;Oh, Seung-Geun;Park, Dai-Hee
    • Journal of KIISE:Databases
    • /
    • v.37 no.3
    • /
    • pp.127-136
    • /
    • 2010
  • With rapid growth of information and computer communication technologies, the numbers of digital documents including multimedia data have been recently exploded. In particular, news video database and news video mining have became the subject of extensive research, to develop effective and efficient tools for manipulation and analysis of news videos, because of their information richness. However, many research focus on browsing, retrieval and summarization of news videos. Up to date, it is a relatively early state to discover and to analyse the plentiful latent semantic knowledge from news videos. In this paper, we propose the news video mining system based on multi-modal approach and text mining, which uses the visual-textual information of news video clips and their scripts. The proposed system systematically constructs a taxonomy of news video stories in automatic manner with hierarchical clustering algorithm which is one of text mining methods. Then, it multilaterally analyzes the topics of news video stories by means of time-cluster trend graph, weighted cluster growth index, and network analysis. To clarify the validity of our approach, we analyzed the news videos on "The Second Summit of South and North Korea in 2007".