• Title/Summary/Keyword: Semantic image retrieval

Search Result 74, Processing Time 0.024 seconds

Web Image Classification using Semantically Related Tags and Image Content (의미적 연관태그와 이미지 내용정보를 이용한 웹 이미지 분류)

  • Cho, Soo-Sun
    • Journal of Internet Computing and Services
    • /
    • v.11 no.3
    • /
    • pp.15-24
    • /
    • 2010
  • In this paper, we propose an image classification which combines semantic relations of tags with contents of images to improve the satisfaction of image retrieval on application domains as huge image sharing sites. To make good use of image retrieval or classification algorithms on huge image sharing sites as Flickr, they are applicable to real tagged Web images. To classify the Web images by 'bag of visual word' based image content, our algorithm includes training the category model by utilizing the preliminary retrieved images with semantically related tags as training data and classifying the test images based on PLSA. In the experimental results on the Flickr Web images, the proposed method produced the better precision and recall rates than those from the existing method using tag information.

A Similarity Ranking Algorithm for Image Databases (이미지 데이터베이스 유사도 순위 매김 알고리즘)

  • Cha, Guang-Ho
    • Journal of KIISE:Databases
    • /
    • v.36 no.5
    • /
    • pp.366-373
    • /
    • 2009
  • In this paper, we propose a similarity search algorithm for image databases. One of the central problems regarding content-based image retrieval (CBIR) is the semantic gap between the low-level features computed automatically from images and the human interpretation of image content. Many search algorithms used in CBIR have used the Minkowski metric (or $L_p$-norm) to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information. Our new search algorithm tackles this problem by employing new similarity measures and ranking strategies that reflect the nonlinearity of human perception and contextual information. Our search algorithm yields superior experimental results on a real handwritten digit image database and demonstrates its effectiveness.

Semantic Image Annotation using Inference in Mobile Environments (모바일 환경에서 추론을 이용한 의미 기반 이미지 어노테이션 시스템 설계 및 구현)

  • Seo, Kwang-won;Im, Dong-Hyuk
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.999-1000
    • /
    • 2017
  • 본 논문에서는 이전의 의미 기반 이미지 어노테이션 및 검색 시스템 Moment(Mobile Semantic Image Annotation and Retrieval System)에 RDF(Resource Description Framework) 추론 기능을 사용한 어노테이션 방법을 제안한다. 이를 위하여 제안된 시스템은 Apache Jena Inference API를 통해 구현되였으며 각 이미지들이 가진 어노테이션의 개수가 증가되었다. 자동으로 추론된 결과 또한 SPARQL 질의를 통해 검색이 가능하며, 기존 어노테이션 결과에 대한 의미 검색을 더욱 효과적으로 할 수 있게 한다.

Comparison Shopping System using Image Retrieval on the Semantic Web (시멘틱 웹 기반의 이미지 검색을 이용한 비교 쇼핑 시스템)

  • 이기성;유영훈;조근식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.556-558
    • /
    • 2004
  • 전자상거래의 발달로 인하여 설러 쇼핑몰들의 상품정보를 효과적으로 비교할 수 있도록 하기위한 다양한 방법들이 연구되어져 왔다. 특히. 비교구매 쇼핑몰은 사용자가 찾고자 하는 상품의 정보들을 정확히 알고있는 상태에서 검색 조건들의 입력을 통해, 해당 상품을 보유한 쇼핑몰들의 상품 정보들을 비교함으로써 보다 저렴한 상품의 구매가 이루어지도록 한다. 그러나 이러한 시스템은 원하는 상품에 대한 정확한 지식이 있는 사용자에게 유용하며, 만일 고객이 원하는 상품에 대한 정확한 지식이 없을 경우, 비교 구매 시스템의 효용성은 떨어질 수밖에 없는 문제를 가지고 있다. 이러한 문제의 해결을 위해 본 논문은 상품에 대한 지식이 없는 사용자가 카테고리나 키워드로 검색을 하지 않고, 온톨로지를 기반으로한 이미지 쿼리에 의해 결과를 얻을 수 있도록 이미지 검색에 의한 비교 쇼핑 시스템을 제안한다. 각 쇼핑몰의 상품 이미지들의 메타데이터 안에 도메인 전문가에 의해 온톨로지 기반의 daml로 생성된 주석이 추가된다. 사용자들은 이렇게 생성된 이미지들을 드래그 앤 드롭(Orag and Drop)을 통해 기존의 쇼핑몰에서 복잡한 키워드로 검색하는 것을 대체하게 되고 상품들에 대한 비교정보를 얻을 수 있다. 본 논문은 의류상품을 이용한 이미지 검색 비교 구매 시스템(Image Retrieval Comparison Shopping)을 구현하였다.

  • PDF

Intelligent Image Retrieval Techniques using Color Semantics (색상 의미를 이용한 지능적 이미지 검색 기법)

  • Hong, Sungyong;Nah, Yunmook
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.35-38
    • /
    • 2004
  • 기존의 내용기반 이미지 검색 시스템은 색상, 질감, 모양등과 같은 특징 벡터를 추출하여 검색하는 방법이 많이 연구되어 왔다. 특히 색상 정보는 이미지를 검색하기 위하여 중요한 정보로 사용되고 있다. 따라서 색상 이미지를 검색하기 위해서 평균 RGB, HSI값을 이용하거나 히스토그램을 이용하는 방식이 많이 사용 되어왔다. 본 논문에서는 사람이 시각적으로 보고 느끼는 색상(H), 채도(S), 명도(I) 방식을 이용한 HSI값을 사용하여 색상 의미를 이용한 지능적 이미지 검색 기법을 제안하고 알고리즘을 설명한다. 색상 의미(Color Semantics)란 사람의 시각적인 특징을 기반으로 칼라 이미지에 적용하여 감성 형용사 기반으로 검색할 수 있는 방법이다. 색상 의미를 이용한 지능적 이미지 검색은 색상-기반 질의(color-based retrieval)를 제공할 뿐만 아니라 인간의 감성이나 느낌에 의한 의미-기반 질의(semantic-based retrieval)방식을 가능하게 한다. 즉, "시원한 이미지" 혹은 "부드러운 이미지"를 검색하는 방식이다. 따라서 사용자의 검색 의도를 보다 정확하게 표현할 수 있으며, 검색의 결과에 대한 만족도를 향상 시킬 수 있다.

  • PDF

Region Based Image Similarity Search using Multi-point Relevance Feedback (다중점 적합성 피드백방법을 이용한 영역기반 이미지 유사성 검색)

  • Kim, Deok-Hwan;Lee, Ju-Hong;Song, Jae-Won
    • The KIPS Transactions:PartD
    • /
    • v.13D no.7 s.110
    • /
    • pp.857-866
    • /
    • 2006
  • Performance of an image retrieval system is usually very low because of the semantic gap between the low level feature and the high level concept in a query image. Semantically relevant images may exhibit very different visual characteristics, and may be scattered in several clusters. In this paper, we propose a content based image rertrieval approach which combines region based image retrieval and a new relevance feedback method using adaptive clustering together. Our main goal is finding semantically related clusters to narrow down the semantic gap. Our method consists of region based clustering processes and cluster-merging process. All segmented regions of relevant images are organized into semantically related hierarchical clusters, and clusters are merged by finding the number of the latent clusters. This method, in the cluster-merging process, applies r: using v principal components instead of classical Hotelling's $T_v^2$ [1] to find the unknown number of clusters and resolve the singularity problem in high dimensions and demonstrate that there is little difference between the performance of $T^2$ and that of $T_v^2$. Experiments have demonstrated that the proposed approach is effective in improving the performance of an image retrieval system.

A Feature Re-weighting Approach for the Non-Metric Feature Space (가변적인 길이의 특성 정보를 지원하는 특성 가중치 조정 기법)

  • Lee Robert-Samuel;Kim Sang-Hee;Park Ho-Hyun;Lee Seok-Lyong;Chung Chin-Wan
    • Journal of KIISE:Databases
    • /
    • v.33 no.4
    • /
    • pp.372-383
    • /
    • 2006
  • Among the approaches to image database management, content-based image retrieval (CBIR) is viewed as having the best support for effective searching and browsing of large digital image libraries. Typical CBIR systems allow a user to provide a query image, from which low-level features are extracted and used to find 'similar' images in a database. However, there exists the semantic gap between human visual perception and low-level representations. An effective methodology for overcoming this semantic gap involves relevance feedback to perform feature re-weighting. Current approaches to feature re-weighting require the number of components for a feature representation to be the same for every image in consideration. Following this assumption, they map each component to an axis in the n-dimensional space, which we call the metric space; likewise the feature representation is stored in a fixed-length vector. However, with the emergence of features that do not have a fixed number of components in their representation, existing feature re-weighting approaches are invalidated. In this paper we propose a feature re-weighting technique that supports features regardless of whether or not they can be mapped into a metric space. Our approach analyses the feature distances calculated between the query image and the images in the database. Two-sided confidence intervals are used with the distances to obtain the information for feature re-weighting. There is no restriction on how the distances are calculated for each feature. This provides freedom for how feature representations are structured, i.e. there is no requirement for features to be represented in fixed-length vectors or metric space. Our experimental results show the effectiveness of our approach and in a comparison with other work, we can see how it outperforms previous work.

A Survey on Image Emotion Recognition

  • Zhao, Guangzhe;Yang, Hanting;Tu, Bing;Zhang, Lei
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1138-1156
    • /
    • 2021
  • Emotional semantics are the highest level of semantics that can be extracted from an image. Constructing a system that can automatically recognize the emotional semantics from images will be significant for marketing, smart healthcare, and deep human-computer interaction. To understand the direction of image emotion recognition as well as the general research methods, we summarize the current development trends and shed light on potential future research. The primary contributions of this paper are as follows. We investigate the color, texture, shape and contour features used for emotional semantics extraction. We establish two models that map images into emotional space and introduce in detail the various processes in the image emotional semantic recognition framework. We also discuss important datasets and useful applications in the field such as garment image and image retrieval. We conclude with a brief discussion about future research trends.

RGB Channel Selection Technique for Efficient Image Segmentation (효율적인 이미지 분할을 위한 RGB 채널 선택 기법)

  • 김현종;박영배
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.10
    • /
    • pp.1332-1344
    • /
    • 2004
  • Upon development of information super-highway and multimedia-related technoiogies in recent years, more efficient technologies to transmit, store and retrieve the multimedia data are required. Among such technologies, firstly, it is common that the semantic-based image retrieval is annotated separately in order to give certain meanings to the image data and the low-level property information that include information about color, texture, and shape Despite the fact that the semantic-based information retrieval has been made by utilizing such vocabulary dictionary as the key words that given, however it brings about a problem that has not yet freed from the limit of the existing keyword-based text information retrieval. The second problem is that it reveals a decreased retrieval performance in the content-based image retrieval system, and is difficult to separate the object from the image that has complex background, and also is difficult to extract an area due to excessive division of those regions. Further, it is difficult to separate the objects from the image that possesses multiple objects in complex scene. To solve the problems, in this paper, I established a content-based retrieval system that can be processed in 5 different steps. The most critical process of those 5 steps is that among RGB images, the one that has the largest and the smallest background are to be extracted. Particularly. I propose the method that extracts the subject as well as the background by using an Image, which has the largest background. Also, to solve the second problem, I propose the method in which multiple objects are separated using RGB channel selection techniques having optimized the excessive division of area by utilizing Watermerge's threshold value with the object separation using the method of RGB channels separation. The tests proved that the methods proposed by me were superior to the existing methods in terms of retrieval performances insomuch as to replace those methods that developed for the purpose of retrieving those complex objects that used to be difficult to retrieve up until now.

Web Ontology Modeling Based on Description Logic and SWRL (기술논리와 SWRL 기반의 웹 온톨로지 모델링)

  • Kim, Su-Kyoung;Ahn, Kee-Hong
    • Journal of the Korean Society for information Management
    • /
    • v.25 no.1
    • /
    • pp.149-171
    • /
    • 2008
  • Actually a diffusion of a Semantic Web application and utilization are situations insufficient extremely. Technology most important in Semantic Web application is construction of the Ontology which contents itself with characteristics of Semantic Web. Proposed a suitable a Method of Building Web Ontology for characteristics of Semantic Web and Web Ontology as we compared the existing Ontology construction and Ontology construction techniques proposed for Web Ontology construction, and we analyzed. And modeling did Ontology to bases to Description Logic and the any axiom rule that used an expression way of SWRL, and established Inference-based Web Ontology according to proposed ways. Verified performance of Ontology established through Ontology inference experiment. Also, established an Web Ontology-based Intelligence Image Retrieval System, to experiment systems for performance evaluation of established Web Ontology, and present an example of implementation of a Semantic Web application and utilization. Demonstrated excellence of a Semantic Web application to be based on Ontology through inference experiment of an experiment system.