To enable a relevance feedback paradigm to evolve itself by users' feedback, a reinforcement learning method is proposed. The feature space of the medical images is partitioned into positive and negative hypercubes by the system. Each hypercube constitutes an individual in a genetic algorithm infrastructure. The rules take recombination and mutation operators to make new rules for better exploring the feature space. The effectiveness of the rules is checked by a scoring method by which the ineffective rules will be omitted gradually and the effective ones survive. Our experiments on a set of 10,004 images from the IRMA database show that the proposed approach can better describe the semantic content of images for image retrieval with respect to other existing approaches in the literature.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.1
/
pp.392-412
/
2018
Due to the semantic gap problem across different modalities, automatically retrieval from multimedia information still faces a main challenge. It is desirable to provide an effective joint model to bridge the gap and organize the relationships between them. In this work, we develop a deep image annotation and classification by fusing multi-modal semantic topics (DAC_mmst) model, which has the capacity for finding visual and non-visual topics by jointly modeling the image and loosely related text for deep image annotation while simultaneously learning and predicting the class label. More specifically, DAC_mmst depends on a non-parametric Bayesian model for estimating the best number of visual topics that can perfectly explain the image. To evaluate the effectiveness of our proposed algorithm, we collect a real-world dataset to conduct various experiments. The experimental results show our proposed DAC_mmst performs favorably in perplexity, image annotation and classification accuracy, comparing to several state-of-the-art methods.
The Journal of the Korea institute of electronic communication sciences
/
v.15
no.3
/
pp.579-586
/
2020
There is a large amount of multimedia data on the web page, and a method of extracting semantic information from low level visual information for accurate retrieval is being studied. However, most of these techniques extract one of information from a single image, so it is difficult to extract semantic information when multiple objects are combined in the image. In this paper, each low-level feature is extracted to extract various objects and backgrounds in an image, and these are divided into predefined backgrounds and objects using SVM. The objects and backgrounds divided in this way are constructed with ontology, infer the semantic information of location and association using inference engine. It's possible to extract the semantic information. We propose this method process the complex and high-level semantic information in image.
To overcome the weakness of the image retrieval system using the existing Ontology and the distributed image based on the database having a simple structure, HERMES was suggested to ensure the self-control of various image suppliers and support the image retrieval based on semantic, the mentioned framework could not solve the problems which are not considered the deterioration in the capacity and scalability when many users connect to broker server simultaneously. In this paper the tables are written which in the case numerous users connect at the same time to the supply analogous level of services without the deterioration in the capacity installs Broker servers and then measures the performance time of each inner Broker Component through Monitoring System and saved and decides the ranking in saved data. As many Query performances are dispersed into several Servers User inputted from the users Interface with reference to Broker Ranking Table, Load Balancing system improving reliability in capacity is proposed. Through the experiment, the scheduling technique has proved that this schedule is faster than existing techniques.
Recently, folksonomy-based image-sharing sites where users cooperatively make and utilize tags of image annotation have been gaining popularity. Typically, these sites retrieve images for a user request using simple text-based matching and display retrieved images in the form of photo stream. However, these tags are personal and subjective and images are not categorized, which results in poor retrieval accuracy and low user satisfaction. In this paper, we propose a categorization scheme for folksonomy images which can improve the retrieval accuracy in the tag-based image retrieval systems. Consequently, images are classified by the semantic similarity using text-information and image-information generated on the folksonomy. To evaluate the performance of our proposed scheme, we collect folksonomy images and categorize them using text features and image features. And then, we compare its retrieval accuracy with that of existing systems.
The Journal of the Korea institute of electronic communication sciences
/
v.8
no.3
/
pp.409-414
/
2013
With the increase of multimedia information such as images, researches have been realized on how to extract the high-level semantic information from low-level visual information, and a variety of techniques have been proposed to generate this information automatically. However, most of these technologies extract the semantic information between single images, it's difficult to extract semantic information when a combination of multiple objects within the image. In this paper, we extract the visual features of objects within the image and training images stored in the DB and the features of each object are defined by measuring the similarity. Using ontology reasoner, each object feature within images infers the semantic information by positional relation and associative relation. With this, it's possible to infer semantic information between objects within images, we proposed a method for inferring more complicated and a variety of high-level semantic information.
Journal of the Korea Society of Computer and Information
/
v.11
no.4
s.42
/
pp.1-7
/
2006
Recently, studies of relevance feedback to increase the performance of image retrieval has been activated. In this Paper a new region weighting method in region based image retrieval with relevance feedback is proposed to reduce the semantic gap between the low level feature representation and the high level concept in a given query image. The new weighting method determines the importance of regions according to the spatial locations of regions in an image. Experimental results demonstrate that the retrieval quality of our method is about 18% in recall better than that of area percentage approach. and about 11% in recall better than that of region frequency weighted by inverse image frequency approach and the retrieval time of our method is a tenth of that of region frequency approach.
With the rapid development of internet technology, the number of internet users and the amount of multimedia information on the internet is ever increasing. Recently, the web sites, such as e-business sites and shopping mall sites, deal with lots of image information. As a result, it is required to support content- based image retrieval efficiently on such image data. This paper proposes an intelligent image retrieval system, which adopts XML, technology. To support object-based col)tent retrieval on product catalog images containing multiple objects, we describe a multi -level metadata structure which represents the local features, global features, and semantics of image data. To enable semantic-based and content-based retrieval on such image data, we design a XML-Schema for the proposed metadata and show how to represent such metadata using XML- documents. We also describe how to automatically transform the retrieval results into the forms suitable for the various user environments, such as web browser or mobile browser, using XSLT The proposed scheme can be easily implemented on any commercial platforms supporting XML technology. It can be utilized to enable efficient image metadata sharing between systems, and it will contribute in improving the retrieval correctness and the user's satisfaction on content-based e-catalog image retrieval.
The Transactions of the Korea Information Processing Society
/
v.6
no.12
/
pp.3559-3568
/
1999
The information overload with many information resources is an inevitable problem in modern electronic life. It is more difficult to search some information with user's information needs from an uncontrolled flood of many digital information resources, such as the internet which has been rapidly increased. So, many information retrieval systems have been researched and appeared. In text retrieval systems, they have met with user's information needs. While, in image retrieval systems, they have not properly dealt with user's information needs. In this paper, for resolving this problem, we proposed the intelligent user interface for image retrieval. It is based on HCOS(Human-Computer Symmetry) model which is a layed interaction model between a human and computer. Its' methodology is employed to reduce user's information overhead and semantic gap between user and systems. It is implemented with machine learning algorithms, decision tree and backpropagation neural network, for user adaptation capabilities of intelligent image retrieval system(IIRS).
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.3
/
pp.413-420
/
2023
For a long time, researchers have presented excellent results in the field of image retrieval due to many studies on CBIR. However, there is still a semantic gap between these search results for images and human perception. It is still a difficult problem to classify images with a level of human perception using a small number of images. Therefore, this paper proposes an image classification model using deep learning-based transfer learning to minimize the semantic gap between images of people and search systems in image retrieval. As a result of the experiment, the loss rate of the learning model was 0.2451% and the accuracy was 0.8922%. The implementation of the proposed image classification method was able to achieve the desired goal. And in deep learning, it was confirmed that the CNN's transfer learning model method was effective in creating an image database by adding new data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.