DOI QR코드

DOI QR Code

Semantic Information Inference among Objects in Image Using Ontology

온톨로지를 이용한 이미지 내 객체사이의 의미 정보 추론

  • 김지원 (호남대학교 컴퓨터공학과) ;
  • 김철원 (호남대학교 컴퓨터공학과)
  • Received : 2020.03.17
  • Accepted : 2020.06.15
  • Published : 2020.06.30

Abstract

There is a large amount of multimedia data on the web page, and a method of extracting semantic information from low level visual information for accurate retrieval is being studied. However, most of these techniques extract one of information from a single image, so it is difficult to extract semantic information when multiple objects are combined in the image. In this paper, each low-level feature is extracted to extract various objects and backgrounds in an image, and these are divided into predefined backgrounds and objects using SVM. The objects and backgrounds divided in this way are constructed with ontology, infer the semantic information of location and association using inference engine. It's possible to extract the semantic information. We propose this method process the complex and high-level semantic information in image.

웹 페이지에는 방대한 양의 멀티미디어 자료가 있으며 정확한 검색을 위하여 낮은 수준의 시각 정보에서 의미 정보를 추출하는 방법에 대한 연구가 이루어지고 있다. 그러나 이러한 기술들은 대부분 한 장의 이미지에 하나의 정보를 추출하므로 이미지 내에 여러 객체가 조합되어 있는 경우 의미 정보를 추출하기 어렵다. 본 논문에서는 이미지내의 여러 객체와 배경 등을 추출하기 위하여 우선 각각의 저수준 특징을 추출하고, 이를 SVM을 이용하여 미리 정의해 놓은 배경과 객체로 나눈다. 이렇게 나눈 객체와 배경은 온톨로지로 구축하고, 위치와 연관 관계의 의미 정보를 추론엔진을 이용하여 추론한다. 이는 이미지 내의 여러 객체들 사이에 의미 정보 추론이 가능하고, 좀 더 복잡하고 다양한 고수준의 의미 정보를 추론하는 방법을 제안한다.

Keywords

References

  1. E. Oomoto and K. Tanaka, "OVID: Design and Implementation of a Video-Object Database System," IEEE Transactions On Knowledge and Data Enginnering, vol. 5, no. 4, 1993, pp. 629-643. https://doi.org/10.1109/69.234775
  2. J. P. Eakins and M. E. Graham, "Content-based Image Retrieval, A Report to the JISC Technology Application Programme," Technical report, Jan. 1999.
  3. M. Lew, N. Sebe, C. Djeraba, and R. Jain, "Content-based Multimedia Information Retrieval: State of the Art and Challenges," ACM Transactions on Multimedia Computing, Communications, and Applications, vol. 2, no. 1, Feb. 2006, pp. 1-19. https://doi.org/10.1145/1126004.1126005
  4. C. Carson, M. Thomas, S. Belongie, J. Hellerstein, and J. M. Malik, "Blobworld: A System for Region-Based Image Indexing and Retrieval," Third International Conference on Visual Information Systems, 1999.
  5. Y. Dengang and B. Manjunath, "An Efficient Low-Dimensional Color Indexing Scheme for Region-Based Image Retrieval," Proc. of IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), 1999, pp. 3017-20.
  6. E. Hyyoenen, A. Styrman, and S. Saarela, "Ontology-based Image Retrieval," Helsinki Institute for Information Technology, February 2006, pp. 1-19.
  7. J. Shuqiang, H. Tiejun, and G. Wen, "An Ontology-based Approach to Retrieval Digitized Art Images," IEEE/WIC/ACM International Conference on Web Intelligence (WI'04), Sept. 2004, pp. 131-137.
  8. V. Mezaris, I. Kompatsiaris, and M. Strintzis, "Region-based image retrieval using an object ontology and relevance feedback," EURASIP Journal on Applied Signal Processing, vol. 15, no. 4, June 2004, pp. 96-99.
  9. Y. Liu, D. Zhang, G. Lu, and W. Ma, "A survey of content-based image retrieval with high-level semantics," Pattern Recognition, vol. 40, no. 1, Jan. 2007, pp. 262-282. https://doi.org/10.1016/j.patcog.2006.04.045
  10. G. Pass, R. Zabih, and J. Miller , "Comparing images using color coherence vectors," In Proc. ACM Intern. Conf. Multimedia, Boston, MA, U.S.A., 1996.
  11. J. Smith, "Integrated Spatial and Feature Image Systems: Retrieval Analysis and Compression," PhD Thesis, Graduate School of Arts and Sciences, Columbia University, 1997.
  12. M. Tico, Haverinen, and P. Kuosmanen, "A Method of Color Histogram Creation for Image Retrieval," NORSIG(Norwegian Signal Processing Society), pp. 678.
  13. S. Sural, G. Qian, and S. Pramanik, "Segmentation and Histogram Generation using The HSV Color Space for Image Retrieval", International Conference on Image Processing, IEEE, 2002, pp.589-592.
  14. R. S. Gray, "Content-based image retrieval: Color and edges," Technical Report, 1995.
  15. J. Huang, S. Kumar, M. Mitra, W.-J. Zhu, and R. Zabih, "Image Indexing Using Color Correlograms," IEEE International Conference on Computer Vision and Pattern Recognition, 1997.
  16. S. Sural, G. Qian, and S. Pramanik, "Segmentation and Histogram Generation using The HSV Color Space for Image Retrieval," IEEE International Conference on Image Processing, vol. 2, Sept. 2002, pp. II-589-II-592.
  17. R. Gonzalez and R. Woods, Digital Image Processing, 2nd Ed. Prentice Hall, 2002.
  18. Y. Cui and Z. Zhou, "Application of Pattern Recognition of Classifying Texture Image," Intelligent Control and Automation, WCICA 2004 Fifth World Congress, vol. 5, 2004, pp. 15-19.
  19. T. S. Lee, "image Representation using 2D Gabor Wavelet," IEEE transactions on Pattern Analysis and Machine Intelligence, vol. 18, Oct. 1996, pp. 957-971.
  20. M. Vetterli and J. Kovacevic, Wavelets and Subband Coding. Englewood Cliffs: Prentice Hall PTR, 1995.
  21. T. Randen, "Filter and Filter Bank Design for Image Texture Recognition," Ph.D Thesis, NTNU(: Norwegian University of Science and Technology), 1997.
  22. J. Fan and D. K. Yau, Automatic Image segmentation by Integrating Color-Edge Extraction and Seeded Region Growing, IEEE Transactions on Image Processing, vol. 10, 2001, pp. 1454-1466. https://doi.org/10.1109/83.951532
  23. L. Bonsiepen, and W. Coy, "Stable Segmentation Using Color Information", Proc. of Computer Analysis of Images and Patterns, ed. R. Klette, Proc. of CAIP'91, Dresden, Germany, Sept. 1991, pp. 77-84.
  24. S. A. Hijjatoleslami and J. Kittler, "Region Growing: A New Approach," IEEE Transactions on Image Processing, vol. 7, 1998, pp. 1079-1084. https://doi.org/10.1109/83.701170
  25. Segentation based K-means, http://www.conv2.com.
  26. A. Popescu, C. Millet, and P.-A. Moellic "Ontology driven content based image retrieval," ACM International Conference on Image and Video Retrieval, July 2007, pp. 387-394.
  27. J. Shuqiang, H. Tiejun, and G. Wen "An Ontology based Approach to Retrieval Digitized Art Images," IEEE/WIC/ACM International Conference on Web Intelligence (WI'04), Sept. 2004, pp. 131-137.
  28. V. Mezaris, I. Kompatsiaris, and M. G. Strintzis, "Region-based Image Retrieval using an Object Ontology and Relevance Feedback," EURASIP J. of Applied Sigal Processiing, vol. 15, Jan. 2004, pp. 336-901.
  29. JESS, http://www.jessrules.com/jess/index.shtml
  30. P. N. Tan, M. Steinbch, and V. Kumar, Introduction to Data Mining, Addison Wesley. Section 5.5, 2006, pp. 256-276.