• Title/Summary/Keyword: Semantic features

검색결과 381건 처리시간 0.024초

창의적 모션 타이포그라피를 위한 준 음성정보의 시각화 연구 (A Study on the Visualization of Paralinguistic Phonetic Information for Creative Motion Typography)

  • 박선미;남용현
    • 게임&엔터테인먼트 논문지
    • /
    • 제2권2호
    • /
    • pp.61-69
    • /
    • 2006
  • 영상 문화의 발달과 함께 영상의 그래픽적인 요소인 이미지 일러스트레이션과 타이포그래피 등을 이용하여 정보 전달을 극대화 할 수 있는 모션그래픽의 중요성도 날로 강조되고 있으며 최근 의도하는 내용을 창의적인 타이포그래피로 시각화한 사례들을 TV광고, 영화 또는 웹과 같은 다양한 미디어 매체에서 쉽게 찾아 볼 수 있으며 또한 증가 추세에 있다. 이러한 영향으로 모션 타이포그래피에서는 무형의 의미적 개념을 타이포그래피라는 시각적 형식을 통하여 표현하기 위하여 언어적 요소, 시간, 형태, 움직임, 색채 그리고 사운드 등과 같은 다양한 요소들을 응용하여 제작할 수 있는 다양한 방법들이 제안되고 있다. 하지만 실제 의사전달 과정에서 더 큰 영향을 미칠 수 있는 성별, 나이, 건강상태, 병적 상태, 신체 사이즈 등의 생리학적 특징을 들 수 있는데 의사전달이 시각적 형식으로만 표현되어야 하는 모션 타이포그래피에서 준언어적 음성의 특성을 적절하게 반영할 수 있다면 의도한 내용을 보다 빠르고 정확하게 이해시킬 수 있을 것이다.

  • PDF

그림자영향 소거를 통한 아스팔트 도로 경계추출에 관한 연구 (A Study on the Asphalt Road Boundary Extraction Using Shadow Effect Removal)

  • 윤공현
    • 대한원격탐사학회지
    • /
    • 제22권2호
    • /
    • pp.123-129
    • /
    • 2006
  • 고해상도 컬러항공영상은 공간정보생성을 위한 지형의 상세한 정량적 및 정성적 정보를 제공해준다. 하지만 도심지역에서 빌딩 또는 숲에 의한 그림자의 발생으로 인하여 지물 추출 및 분류시 부정확한 결과를 초래 시킬 수 있다. 현재까지 그림자 효과에 대한 여러 연구가 이뤄졌으나 도심지에서 그림자의 발생으로 야기된 분광정보 왜곡의 문제점을 해결하여 도로추출에 대한 연구가 매우 부족한 실정이다 본 연구에서는 컬러항공사진과 LIDAR(LIght Detection and Ranging) 고도 자료를 이용하여 아스팔트 도로 경계선을 추출하는 기법을 제안하였다. 구체적으로 그림자 영향의 제거를 통한 아스팔트 도로 경계선의 추출과정은 다음과 같다. 첫 번째, 항공사진에서 그림자 영역을 LIDAR자료부터 생성된 DSM(Digital Surface Model)과 태양각으로부터 추출하였다. 그 후 도로영역추출기법, 경계선 검출기법을 통하여 도로의 경계를 추출하였으며 이 자료를 벡터화하므로서 GIS벡터의 선분 자료로 생성하였다. 본 연구의 실험결과 제안된 방법은 그림자의 영향을 소거하여 원활한 아스팔트 도로의 경계를 추출하는데 있어서 효과적임을 알 수 있었다.

2019 개정 RDA 특징 분석에 관한 연구 (A Study on Analyzing the Features of 2019 Revised RDA)

  • 이미화
    • 한국도서관정보학회지
    • /
    • 제50권3호
    • /
    • pp.97-116
    • /
    • 2019
  • 본 연구는 2019년 RDA 개정에 따라 개정 RDA의 특징을 분석하고 이를 바탕으로 목록 측면에서 고려사항을 제안하고자 문헌연구를 실시하였다. 개정 RDA 분석을 통해 목록분야에서 고려사항으로 다음 3가지를 제시하였다. 첫째, 목록데이터를 시맨틱 웹 구축이 가능한 링크드데이터로 변환하려면 목록데이터 보완 및 어휘집 구축과 같은 고품질의 데이터 구축이 우선되어야 한다. 둘째, MARC 데이터를 링크드데이터로 완전하게 변환하기 전까지 MARC가 서지데이터의 유일한 인코딩 포맷이므로 개정 RDA에 반영된 LRM 및 링크드데이터의 새로운 개념을 MARC에서 수용할 수 있도록 이를 확장할 필요가 있다. 셋째, 개정 RDA에 포함된 개체 및 요소별로 다양한 조건과 옵션이 있고, 자료유형에 따라서도 입력 요소가 다르기 때문에 일관된 기술을 위해서는 정책 문서와 이에 적합한 응용프로파일이 구체적으로 개발되어야 한다. 본 연구를 시작으로 앞으로 MARC뿐만 아니라 BIBFRAME에서도 개정 RDA의 새로운 개념을 적용하기 위한 연구가 필요하며, 또한, 목록 규칙의 개정이 필요한 국가 및 도서관에서는 개정 RDA 규칙과 레지스트리를 이용할 수 있도록 RDA를 수용하는 방안을 고려해 볼 필요가 있다.

자기 주의 증류를 이용한 심층 신경망 기반의 그림자 제거 (Shadow Removal based on the Deep Neural Network Using Self Attention Distillation)

  • 김진희;김원준
    • 방송공학회논문지
    • /
    • 제26권4호
    • /
    • pp.419-428
    • /
    • 2021
  • 그림자 제거는 객체 추적 및 검출 등 영상처리 기술의 핵심 전처리 요소이다. 최근 심층 합성곱 신경망 (Deep Convolutional Neural Network) 기반의 영상 인식 기술이 발전함에 따라 심층 학습을 이용한 그림자 제거 연구들이 활발히 진행되고 있다. 본 논문에서는 자기 주의 증류(Self Attention Distillation)를 이용하여 심층 특징을 추출하는 새로운 그림자 제거 방법을 제안한다. 제안된 방법은 각 층에서 추출된 그림자 검출 결과를 하향식 증류를 통해 점진적으로 정제한다. 특히, 그림자 검출 결과에 대한 정답을 이용하지 않고 그림자 제거를 위한 문맥적 정보를 형성함으로써 효율적인 심층 신경망 학습을 수행한다. 그림자 제거를 위한 다양한 데이터 셋에 대한 실험 결과를 통해 제안하는 방법이 실제 환경에서 발생한 그림자 제거에 효과적임을 보인다.

임신성 당뇨와 모유수유에 대한 연구 동향 분석: 텍스트네트워크 분석과 토픽모델링 중심 (A study on research trends for gestational diabetes mellitus and breastfeeding: Focusing on text network analysis and topic modeling)

  • 이정림;김영지;곽은주;박승미
    • 한국간호교육학회지
    • /
    • 제27권2호
    • /
    • pp.175-185
    • /
    • 2021
  • Purpose: The aim of this study was to identify core keywords and topic groups in the 'Gestational diabetes mellitus (GDM) and Breastfeeding' field of research for better understanding research trends in the past 20 years. Methods: This was a text-mining and topic modeling study composed of four steps: 1) collecting abstracts, 2) extracting and cleaning semantic morphemes, 3) building a co-occurrence matrix, and 4) analyzing network features and clustering topic groups. Results: A total of 635 papers published between 2001 and 2020 were found in databases (Web of Science, CINAHL, RISS, DBPIA, RISS, KISS). Among them, 3,639 words extracted from 366 articles selected according to the conditions were analyzed by text network analysis and topic modeling. The most important keywords were 'exposure', 'fetus', 'hypoglycemia', 'prevention' and 'program'. Six topic groups were identified through topic modeling. The main topics of the study were 'cardiovascular disease' and 'obesity'. Through the topic modeling analysis, six themes were derived: 'cardiovascular disease', 'obesity', 'complication prevention strategy', 'support of breastfeeding', 'educational program' and 'management of GDM'. Conclusion: This study showed that over the past 20 years many studies have been conducted on complications such as cardiovascular diseases and obesity related to gestational diabetes and breastfeeding. In order to prevent complications of gestational diabetes and promote breastfeeding, various nursing interventions, including gestational diabetes management and educational programs for GDM pregnancies, should be developed in nursing fields.

Question Similarity Measurement of Chinese Crop Diseases and Insect Pests Based on Mixed Information Extraction

  • Zhou, Han;Guo, Xuchao;Liu, Chengqi;Tang, Zhan;Lu, Shuhan;Li, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권11호
    • /
    • pp.3991-4010
    • /
    • 2021
  • The Question Similarity Measurement of Chinese Crop Diseases and Insect Pests (QSM-CCD&IP) aims to judge the user's tendency to ask questions regarding input problems. The measurement is the basis of the Agricultural Knowledge Question and Answering (Q & A) system, information retrieval, and other tasks. However, the corpus and measurement methods available in this field have some deficiencies. In addition, error propagation may occur when the word boundary features and local context information are ignored when the general method embeds sentences. Hence, these factors make the task challenging. To solve the above problems and tackle the Question Similarity Measurement task in this work, a corpus on Chinese crop diseases and insect pests(CCDIP), which contains 13 categories, was established. Then, taking the CCDIP as the research object, this study proposes a Chinese agricultural text similarity matching model, namely, the AgrCQS. This model is based on mixed information extraction. Specifically, the hybrid embedding layer can enrich character information and improve the recognition ability of the model on the word boundary. The multi-scale local information can be extracted by multi-core convolutional neural network based on multi-weight (MM-CNN). The self-attention mechanism can enhance the fusion ability of the model on global information. In this research, the performance of the AgrCQS on the CCDIP is verified, and three benchmark datasets, namely, AFQMC, LCQMC, and BQ, are used. The accuracy rates are 93.92%, 74.42%, 86.35%, and 83.05%, respectively, which are higher than that of baseline systems without using any external knowledge. Additionally, the proposed method module can be extracted separately and applied to other models, thus providing reference for related research.

자율주행 차량 시뮬레이션에서의 강화학습을 위한 상태표현 성능 비교 (Comparing State Representation Techniques for Reinforcement Learning in Autonomous Driving)

  • 안지환;권태수
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제30권3호
    • /
    • pp.109-123
    • /
    • 2024
  • 딥러닝과 강화학습을 활용한 비전 기반 엔드투엔드 자율주행 시스템 관련 연구가 지속적으로 증가하고 있다. 일반적으로 이러한 시스템은 위치, 속도, 방향, 센서 데이터 등 연속적이고 고차원적인 차량의 상태를 잠재 특징 벡터로 인코딩하고, 이를 차량의 주행 정책으로 디코딩하는 두 단계로 구성된다. 도심 주행과 같이 다양하고 복잡한 환경에서는 Variational Autoencoder(VAE)나 Convolutional Neural Network(CNN)과 같은 네트워크를 이용한 효율적인 상태 표현 방법의 필요성이 더욱 부각된다. 본 논문은 차량의 이미지 상태 표현이 강화학습 성능에 미치는 영향을 분석하였다. CARLA 시뮬레이터 환경에서 실험을 수행하였고, 차량의 전방 카메라 센서로부터 취득한 RGB 이미지 및 Semantic Segmented 이미지를 각각 VAE와 Vision Transformer(ViT) 네트워크로 특징 추출하여 상태 표현 학습에 활용하였다. 이러한 방법론이 강화학습에 미치는 영향을 실험하여, 데이터 유형과 상태 표현 기법이 자율주행의 학습 효율성과 결정 능력 향상에 어떤 역할을 하는지를 실험하였다.

웹 페이지의 내재 규칙 습득 과정에서 규칙식별 역할에 대한 효과 분석 (Effect of Rule Identification in Acquiring Rules from Web Pages)

  • 강주영;이재규;박상언
    • 지능정보연구
    • /
    • 제11권1호
    • /
    • pp.123-151
    • /
    • 2005
  • 오늘날 자원의 보고라 할 수 있는 웹에는 자연어로 표현된 텍스트와 테이블들로 구성된 무수히 많은 문서들이 존재하고 있다. 이러한 웹 문서들로부터 규칙을 습득하고 습득된 규칙과 웹 문서간의 일관성을 유지하기 위해, 본 논문에서는 확장형 규칙 표식 언어 (extensible Rule Markup Language, XRML) 체계를 개발하였다. XRML은 웹 페이지에 내재되어 있는 규칙을 식별하여 자동으로 정형화된 규칙을 생성할 수 있도록 지원하는 규칙 식별 표식 언어 (Rule Identification Markup Language, XRML)와 구조화된 규칙 표현을 위한 규칙 구조 표식 언어 (Rule Structure Markup Language)로 구성된다. 특히, RIML은 HTML안에 내재되어 있는 규칙을 HTML 문서에 직접 명시할 수 있도록 설계되었기 때문에, RIML을 통해 웹페이지에 있는 규칙들을 식별하고 이 식별된 규칙은 RSML으로 표현된 정형화된 규칙으로 자동 변환될 수 있다. 본 논문에서는 RIML의 설계 시 웹페이지로부터 규칙을 식별하는 과정에서 발생하는 공유되는 변수 (variables) 및 값 (values),생략된 어구 ,동의어와 같은 몇 가지 중요한 현상들을 발견하고 이를 해결하고자 하였다. 제안된 XRML 접근 방법의 성능을 측정하고자, 3개의 대표적인 온라인 서점인 Amazon.com, BarnesandNoble.com, Powells.com의 실제 웹페이지들로부터 배송 및 환불과 관련된 규칙을 습득하여 XRML의 효과를 측정하는 실험을 수행하였다. 실험 결과에 따르면, 웹페이지로부터 규칙은 $97.7\%$의 매우 높은 정확성을 가지고 습득되었으며, 생성된 규칙의 완전성은 $88.5\%$로 측정되어, XRML이 특정 주제에 관한 전문가 시스템을 구축하기 위해 웹페이지로부터 규칙을 추출할 때 효율적인 도구가 될 수 있음이 예시되었다.

  • PDF

지구과학 논문의 언어 특성 이해: 레지스터 분석 (Understanding of the Linguistic Features of Earth Science Treatises: Register Analysis Approach)

  • 맹승호;신명환;차현정;함석진;신현정;김찬종
    • 한국지구과학회지
    • /
    • 제31권7호
    • /
    • pp.785-797
    • /
    • 2010
  • 이 연구에서는 과학 논문 레지스터를 분석하여 지구과학 논문의 언어 특성을 탐색하였다. 연구 자료로 지질과학, 대기과학, 해양과학의 한국어 논문 1편씩을 선정하였다. 지구과학 논문 레지스터의 특징은 다음과 같다. 첫째, 주제부와 설명부 간의 의미적, 지시적 연결이 체계적으로 이루어지고 있으며, 이를 통해 텍스트가 제시하려는 메시지와 요점이 통일적으로 응집력 있게 제시되었다. 둘째, 각 텍스트의 장르 요소에 따라 연역적 추론 또는 귀추적 추론 관계 및 인과 관계를 나타내는 술어들이 사용되었으며, 논리적 관계는 접속어구보다는 술어의 유형을 통해 표현되었다. 셋째, 대부분의 논문 텍스트에서 가능성을 나타내는 인식적 술어를 사용하여 과학자들의 해석과 설명 및 주장을 간접적으로 표현하는 약한 상호관계를 형성하였다. 연구 결과를 근거로 학생들이 과학 학습 과정에서 과학 텍스트에 대한 문해 능력을 높이고, 과학자들의 지식 구성 방식을 이해하기 위해서는 과학 글에서 각 문장을 구성하는 주제부와 설명부의 연결 관계를 파악하고, 술어의 유형에 따라 논리적 관계를 조사하는 과학 언어 풀어내기 활동이 과학 교육과정에 포함되어야 함을 논의하였다.

XML을 이용한 지능형 이미지 검색 시스템 (An Intelligent Image Retrieval System using XML)

  • 홍성용;나연묵
    • 한국멀티미디어학회논문지
    • /
    • 제7권1호
    • /
    • pp.132-144
    • /
    • 2004
  • 인터넷 기술의 급속한 발전으로 인하여 인터넷 사용자의 수와 인터넷상의 멀티미디어 정보의 양이 계속 증가하고 있다. 최근의 e-비즈니스나 쇼핑몰 사이트에서는 많은 양의 이미지 정보를 취급하고 있으며, 이로 인하여 이미지에 대한 효율적인 내용 검색의 필요성이 대두되고 있다. 본 논문에서는 XML기술을 이용하여 웹 상의 이미지를 지능적으로 검색할 수 있는 시스템을 제안한다. 상품 카탈로그와 같은 복잡하고 다중 객체를 보유하고 있는 이미지에 대하여 객체 기반 내용 검색을 수행할 수 있도록 지역 특징, 전역 특징, 의미 등의 메타 데이타를 표현하는 다계층 메타데이타 구조를 제안한다. 또한, 이미지에 대한 의미 기반 검색 및 내용 기반 검색을 수행 할 수 있도록 이러한 메타데이타를 저장하기 위한 XML-Schema를 설계하고 각 메타데이타를 XML 문서 형태로 표현하는 방법을 보인다. 또한, XSLT를 이용하여 이미지에 대한 검색 결과를 웹 브라우저나 모바일 브라우저와 같은 다양한 사용자 환경에 보여줄 수 있도록 자동 변환하는 방법을 제시한다. 본 논문에서 제시한 방법은 이미지에 대한 메타데이타를 XML 형태로 표현하므로 XML을 지원하는 상용 시 스템을 이용하여 용이하게 시스템을 구현할 수 있으며, 이미지 메타데이타의 시스템간 공유도, 검색질의에 대한 정확성, 사용자의 검색 만족도를 증가시킬 수 있다.

  • PDF