• Title/Summary/Keyword: Semantic drone dataset

Search Result 3, Processing Time 0.016 seconds

Semantic Segmentation of Heterogeneous Unmanned Aerial Vehicle Datasets Using Combined Segmentation Network

  • Ahram, Song
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.87-97
    • /
    • 2023
  • Unmanned aerial vehicles (UAVs) can capture high-resolution imagery from a variety of viewing angles and altitudes; they are generally limited to collecting images of small scenes from larger regions. To improve the utility of UAV-appropriated datasetsfor use with deep learning applications, multiple datasets created from variousregions under different conditions are needed. To demonstrate a powerful new method for integrating heterogeneous UAV datasets, this paper applies a combined segmentation network (CSN) to share UAVid and semantic drone dataset encoding blocks to learn their general features, whereas its decoding blocks are trained separately on each dataset. Experimental results show that our CSN improves the accuracy of specific classes (e.g., cars), which currently comprise a low ratio in both datasets. From this result, it is expected that the range of UAV dataset utilization will increase.

Semantic Segmentation of Drone Images Based on Combined Segmentation Network Using Multiple Open Datasets (개방형 다중 데이터셋을 활용한 Combined Segmentation Network 기반 드론 영상의 의미론적 분할)

  • Ahram Song
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.967-978
    • /
    • 2023
  • This study proposed and validated a combined segmentation network (CSN) designed to effectively train on multiple drone image datasets and enhance the accuracy of semantic segmentation. CSN shares the entire encoding domain to accommodate the diversity of three drone datasets, while the decoding domains are trained independently. During training, the segmentation accuracy of CSN was lower compared to U-Net and the pyramid scene parsing network (PSPNet) on single datasets because it considers loss values for all dataset simultaneously. However, when applied to domestic autonomous drone images, CSN demonstrated the ability to classify pixels into appropriate classes without requiring additional training, outperforming PSPNet. This research suggests that CSN can serve as a valuable tool for effectively training on diverse drone image datasets and improving object recognition accuracy in new regions.

Implementation of Photovoltaic Panel failure detection system using semantic segmentation (시멘틱세그멘테이션을 활용한 태양광 패널 고장 감지 시스템 구현)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1777-1783
    • /
    • 2021
  • The use of drones is gradually increasing for the efficient maintenance of large-scale renewable energy power generation complexes. For a long time, photovoltaic panels have been photographed with drones to manage panel loss and contamination. Various approaches using artificial intelligence are being tried for efficient maintenance of large-scale photovoltaic complexes. Recently, semantic segmentation-based application techniques have been developed to solve the image classification problem. In this paper, we propose a classification model using semantic segmentation to determine the presence or absence of failures such as arcs, disconnections, and cracks in solar panel images obtained using a drone equipped with a thermal imaging camera. In addition, an efficient classification model was implemented by tuning several factors such as data size and type and loss function customization in U-Net, which shows robust classification performance even with a small dataset.