• Title/Summary/Keyword: Semantic Relationship

Search Result 324, Processing Time 0.019 seconds

An Educational Service Platform using Collective Intelligence and Presence of Web 2.0

  • Kim, Chang-Suk;Son, Dong-Cheul;Cho, Chung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.115-121
    • /
    • 2009
  • Web 2.0 has become the face next generation Web among the business world and research community. Web 2.0 is instant superficial gratification of people. On the other hand, Semantic Web is deep, meaningful and lasting relationship with data. So, it is difficult to apply the Semantic Web to the real world. In this paper, a platform for educational services using the Semantic Web and Web 2.0 is proposed. The proposed platform is based mix of the Semantic Web and Web 2.0, so it is useful to apply in the real world applications. Two services are presented, one is a semantic email system and the other is a cyber study space. The cyber study space adjusted each student is presented. The study environment is called iStudySpace that has personal scheduler, study status plan table, personalized search engine and several gadgets. Finally characteristics and limitations of the Semantic Web and Web 2.0, the organization and components of the platform, evaluation of iStudySpace are shown.

Semantic Conceptual Relational Similarity Based Web Document Clustering for Efficient Information Retrieval Using Semantic Ontology

  • Selvalakshmi, B;Subramaniam, M;Sathiyasekar, K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3102-3119
    • /
    • 2021
  • In the modern rapid growing web era, the scope of web publication is about accessing the web resources. Due to the increased size of web, the search engines face many challenges, in indexing the web pages as well as producing result to the user query. Methodologies discussed in literatures towards clustering web documents suffer in producing higher clustering accuracy. Problem is mitigated using, the proposed scheme, Semantic Conceptual Relational Similarity (SCRS) based clustering algorithm which, considers the relationship of any document in two ways, to measure the similarity. One is with the number of semantic relations of any document class covered by the input document and the second is the number of conceptual relation the input document covers towards any document class. With a given data set Ds, the method estimates the SCRS measure for each document Di towards available class of documents. As a result, a class with maximum SCRS is identified and the document is indexed on the selected class. The SCRS measure is measured according to the semantic relevancy of input document towards each document of any class. Similarly, the input query has been measured for Query Relational Semantic Score (QRSS) towards each class of documents. Based on the value of QRSS measure, the document class is identified, retrieved and ranked based on the QRSS measure to produce final population. In both the way, the semantic measures are estimated based on the concepts available in semantic ontology. The proposed method had risen efficient result in indexing as well as search efficiency also has been improved.

Two-Phase Shallow Semantic Parsing based on Partial Syntactic Parsing (부분 구문 분석 결과에 기반한 두 단계 부분 의미 분석 시스템)

  • Park, Kyung-Mi;Mun, Young-Song
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.85-92
    • /
    • 2010
  • A shallow semantic parsing system analyzes the relationship that a syntactic constituent of the sentence has with a predicate. It identifies semantic arguments representing agent, patient, instrument, etc. of the predicate. In this study, we propose a two-phase shallow semantic parsing model which consists of the identification phase and the classification phase. We first find the boundary of semantic arguments from partial syntactic parsing results, and then assign appropriate semantic roles to the identified semantic arguments. By taking the sequential two-phase approach, we can alleviate the unbalanced class distribution problem, and select the features appropriate for each task. Experiments show the relative contribution of each phase on the test data.

A Framework for Semantic Interpretation of Noun Compounds Using Tratz Model and Binary Features

  • Zaeri, Ahmad;Nematbakhsh, Mohammad Ali
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.743-752
    • /
    • 2012
  • Semantic interpretation of the relationship between noun compound (NC) elements has been a challenging issue due to the lack of contextual information, the unbounded number of combinations, and the absence of a universally accepted system for the categorization. The current models require a huge corpus of data to extract contextual information, which limits their usage in many situations. In this paper, a new semantic relations interpreter for NCs based on novel lightweight binary features is proposed. Some of the binary features used are novel. In addition, the interpreter uses a new feature selection method. By developing these new features and techniques, the proposed method removes the need for any huge corpuses. Implementing this method using a modular and plugin-based framework, and by training it using the largest and the most current fine-grained data set, shows that the accuracy is better than that of previously reported upon methods that utilize large corpuses. This improvement in accuracy and the provision of superior efficiency is achieved not only by improving the old features with such techniques as semantic scattering and sense collocation, but also by using various novel features and classifier max entropy. That the accuracy of the max entropy classifier is higher compared to that of other classifiers, such as a support vector machine, a Na$\ddot{i}$ve Bayes, and a decision tree, is also shown.

Document Clustering Using Semantic Features and Fuzzy Relations

  • Kim, Chul-Won;Park, Sun
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.3
    • /
    • pp.179-184
    • /
    • 2013
  • Traditional clustering methods are usually based on the bag-of-words (BOW) model. A disadvantage of the BOW model is that it ignores the semantic relationship among terms in the data set. To resolve this problem, ontology or matrix factorization approaches are usually used. However, a major problem of the ontology approach is that it is usually difficult to find a comprehensive ontology that can cover all the concepts mentioned in a collection. This paper proposes a new document clustering method using semantic features and fuzzy relations for solving the problems of ontology and matrix factorization approaches. The proposed method can improve the quality of document clustering because the clustered documents use fuzzy relation values between semantic features and terms to distinguish clearly among dissimilar documents in clusters. The selected cluster label terms can represent the inherent structure of a document set better by using semantic features based on non-negative matrix factorization, which is used in document clustering. The experimental results demonstrate that the proposed method achieves better performance than other document clustering methods.

CRFNet: Context ReFinement Network used for semantic segmentation

  • Taeghyun An;Jungyu Kang;Dooseop Choi;Kyoung-Wook Min
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.822-835
    • /
    • 2023
  • Recent semantic segmentation frameworks usually combine low-level and high-level context information to achieve improved performance. In addition, postlevel context information is also considered. In this study, we present a Context ReFinement Network (CRFNet) and its training method to improve the semantic predictions of segmentation models of the encoder-decoder structure. Our study is based on postprocessing, which directly considers the relationship between spatially neighboring pixels of a label map, such as Markov and conditional random fields. CRFNet comprises two modules: a refiner and a combiner that, respectively, refine the context information from the output features of the conventional semantic segmentation network model and combine the refined features with the intermediate features from the decoding process of the segmentation model to produce the final output. To train CRFNet to refine the semantic predictions more accurately, we proposed a sequential training scheme. Using various backbone networks (ENet, ERFNet, and HyperSeg), we extensively evaluated our model on three large-scale, real-world datasets to demonstrate the effectiveness of our approach.

Keyword Search and Ranking Methods on Semantic Web Documents (시맨틱 웹 문서에 대한 키워드 검색 및 랭킹 기법)

  • Kim, Youn-Hee;Oh, Sung-Kyun
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.86-93
    • /
    • 2012
  • In this paper, we propose keyword search and ranking methods for OWL documents that describe metadata and ontology on the Semantic Web. The proposed keyword search method defines a unit of keyword search result as an information resource and expands a scope of query keyword to names of class and property or literal data. And we reflected derived information by inference in the keyword search by considering the elements of OWL documents such as hierarchical relationship of classes or properties and equal relationship of classes. In addition, our method can search a large number of information resources that are relevant to query keywords because of information resources indirectly associated with query keywords through semantic relationship. Our ranking method can improve user's search satisfaction because of involving a variety of factors in the ranking by considering the characteristics of OWL. The proposed methods can be used to retrieve digital contents, such as broadcast programs.

Grammaticalization and Semantic Typology: Time-relationship Adverbs in Japanese, Korean, English and German

  • Moriya, Tetsuharu;Horie, Kaoru
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2002.02a
    • /
    • pp.348-357
    • /
    • 2002
  • This paper discusses constraints on grammaticalization, a primarily diachronic process through which lexical elements take on grammatical functions. In particular, it will argue that two constraints on this process, namely Persistence and Lwering, explain the different distributional patterns of time-relationship adverbs in Japanese, Korean, English and German. Furthermore, it will suggest that the distributional difference between Japanese and Korean time-relationship adverbs is not an isolated phenomenon but is a reflection of the overall semantic typological differences between the two languages in the sense of Hawkins (1986).

  • PDF

A Keyword Query Processing Technique of OWL Data using Semantic Relationships (의미적 관계를 이용한 OWL 데이터의 키워드 질의 처리 기법)

  • Kim, Youn Hee;Kim, Sung Wan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.59-72
    • /
    • 2013
  • In this paper, we propose a keyword query processing technique based on semantic relationships for OWL data. The proposed keyword query processing technique can improve user's search satisfaction by performing two types of associative search. The first associative search uses information inferred by the relationships between classes or properties during keyword query processing. And it supports to search all information resources that are either directly or indirectly related with query keywords by semantic relationships between information resources. The second associative search returns not only information resources related with query keywords but also values of properties of them. We design a storage schema and index structures to support the proposed technique. And we propose evaluation functions to rank retrieved information resources according to three criteria. Finally, we evaluate the validity and accuracy of the proposed technique through experiments. The proposed technique can be utilized in a variety of fields, such as paper retrieval and multimedia retrieval.

A Study on Knowledge Representation Schemes for Use in Human Resource Management Problem Domains (인적자원관리 분야의 지식표현체계에 관한 연구)

  • Byeon, Dae-Ho
    • Asia pacific journal of information systems
    • /
    • v.7 no.1
    • /
    • pp.85-97
    • /
    • 1997
  • This paper is concerned with knowledge representation schemes best suited for human resource management (HRM) problem domains including human resource planing, selection, placement, compensations, performance evaluation, training and labor-management relations. In order to suggest the scheme we consider two research gods. First, we evaluate and prioritize. The knowledge representation techniques of frames rules, semantic nets and predicate logic that hove been recommended to managerial domains. The combined Analytic Hierarchy Process technique is employed to combine individual judgments effectively between two different expert groups. As a result if we are to select a single knowledge representation technique, a frame representation is best for most HRM domains and to combine frames with others is another choice. Second as a strategy for knowledge representation schemes we show some examples for each damn in terms of labeled semantic nets and two types of rules derived from the semantic nets. We propose nine knowledge components as ontologies. The labeled semantic nets con provide some benefits compared with conventional one. More clearly definea node rode information maces it easy to find the ac information. In the rule sets, the variables are the node of the semantic nets. The consistency of rules is validated by the relationship of the knowledge components.

  • PDF