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Abstract

Recent semantic segmentation frameworks usually combine low-level and

high-level context information to achieve improved performance. In addition,

postlevel context information is also considered. In this study, we present a

Context ReFinement Network (CRFNet) and its training method to improve

the semantic predictions of segmentation models of the encoder–decoder
structure. Our study is based on postprocessing, which directly considers the

relationship between spatially neighboring pixels of a label map, such as

Markov and conditional random fields. CRFNet comprises two modules: a

refiner and a combiner that, respectively, refine the context information from

the output features of the conventional semantic segmentation network model

and combine the refined features with the intermediate features from the

decoding process of the segmentation model to produce the final output. To

train CRFNet to refine the semantic predictions more accurately, we proposed

a sequential training scheme. Using various backbone networks (ENet,

ERFNet, and HyperSeg), we extensively evaluated our model on three large-

scale, real-world datasets to demonstrate the effectiveness of our approach.
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1 | INTRODUCTION

Semantic segmentation is the task of classifying
every pixel in an input image into a predefined class. It
can provide comprehensive information and can be
used in various fields, such as autonomous driving
(e.g., moving-object detection and drivable space
detection), medical imaging (e.g., white blood cell
segmentation, abnormal region extraction), satellite
imaging, and image editing (e.g., boundary extraction
and attention area extraction).

After the days of handcraft-based feature representa-
tion, deep networks, particularly convolutional neural
network (CNN)-based methods, have become main-
stream in the field of semantic segmentation, exhibiting
outstanding performance. In addition, in the field of
semantic segmentation, several improved CNN-based
algorithms based on fully convolutional networks (FCN)
have been proposed [1,2]. These algorithms are based on
a serial structure consisting of an encoder responsible for
extracting image features and a decoder that transforms
the encoder information into label information
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(encoder–decoder structure). In addition to the extension
of the depth and width of the network architecture, vari-
ous concepts, such as multiresolution [3–5], multiloss
[6,7], and multitasking [8,9], have been applied.

In the dictionary sense, context is the situation in
which something happens, or the group of conditions
that exist at the site and time something happens. In
semantic segmentation, the context implies that the
information (feature, label) of a given pixel is affected by
the surrounding information, and vice versa. For exam-
ple, there are positional characteristics, such as “people
or vehicles are on the ground,” or shape characteristics,
such as “the approximate shape of the vehicle is a poly-
gon with a bumpy bottom part.”

In semantic segmentation, the deep-learning network
typically consists of an encoder–decoder structure.
Recent deep-learning-based semantic segmentation uses
dilated convolution [10,11] (also known as atrous convo-
lution) or pyramidal structures [4,12,13] to present con-
text information more effectively. These approaches
represent the context of network encoder features.
Although most semantic information can be contained in
the encoding stage, it does not contain fine-level label

information because it is processed before it passes
through the decoder. Therefore, if the context of the label
information is directly represented, improved results can
be expected.

Random-field-based techniques are used to represent
the context of the label itself [10,14,15]. They are exten-
sively used as a postprocessing step in the classical, hand-
crafted, feature-based segmentation framework, and
produce results that satisfy both the unary term related to
the per-pixel label probability and the pairwise term con-
sidering the context between neighboring pixels. In the
case of a Markov random field, it smoothens the label
between neighboring pixels, and in the case of a condi-
tional random field, there may be an improved effect
associated with the use of additional information to make
the boundary fit better. In some cases, CNN-based
semantic segmentation and random-field techniques
have been used in conjunction, or implemented as addi-
tional layers.

In this study, we propose a network refinement struc-
ture that extends existing semantic segmentation net-
works. As shown in Figure 1, the core component of
CRFNet is a simple refiner–combiner structure. The

F I GURE 1 Proposed Context ReFinement Network (CRFNet) framework overview. (Top) A typical fully convolutional neural network

for semantic segmentation with an encoder–decoder structure. (Bottom) The CRFNet framework makes it possible to consider the context of

the label itself by using the resulting label of the previous network as a feature. It considers the context of the label as it passes through the

refiner module, and combines features to improve the results of the existing network in the combiner module. Additionally, parameter

freezing can be used appropriately in the training process to achieve improved results.

AN ET AL. 823



refiner module extracts context information from the out-
put features of the conventional semantic segmentation
network. Unlike the encoder features, which implicitly
contain label information, the output feature of the
decoder is closer to the label. Therefore, it is possible to
add context information that differs from the context
handled at the encoder level. An improved result can
then be produced using a combiner that combines the
features from the previously refined result with those
from the backbone network. In addition, we propose a
sequential training scheme suitable for the proposed
refinement network. Using this sequential training
scheme, the proposed network can play the role of a
refinement network that can address the shortcomings of
the existing backbone network and not just a multistage
network. We demonstrated the effectiveness of the pro-
posed method based on extensive experiments.

A particular advantage of the proposed method is
that the refinement module can be easily applied to
any semantic segmentation network with structures
that can extract the decoder features of the output
label that immediately precedes the spatial level. Using
the encoder–decoder-based conventional semantic seg-
mentation network as the backbone network, improved
results can be obtained with the proposed refinement
scheme.

The proposed method was developed to improve
semantic segmentation models for autonomous driving,
and significant performance improvements can be
observed in lightweight and fast models corresponding
to semantic segmentation methods for autonomous
driving.

In summary, the proposed method makes five major
contributions to the literature.

• We propose a novel network extension method that
considers context information from label information
directly using a small number of additional parameters
proportional to the square of the number of semantic
classes

• The proposed method can easily extend existing
semantic segmentation networks if the decoder fea-
tures of the output label and the immediately preced-
ing spatial level can be extracted

• We propose a sequential training method suitable for
the proposed refinement network

• Experimental results show that the proposed method
stably improves the performance of existing semantic
segmentation models

• In addition to the extensively used Cityscapes [16] and
CamVid datasets [17], experiments were conducted
using the recently distributed KITTI-360 dataset [18]
and produced meaningful results

2 | RELATED WORKS

2.1 | Semantic segmentation

The development of deep learning has become a stepping-
stone in the remarkable improvement of semantic segmen-
tation. Since the completion of the pioneering works on
fully convolutional networks [1] and DeConvNet [2], vari-
ous research directions have been studied in accordance
with the characteristics required by semantic segmentation.

Semantic segmentation is a task that requires dense
prediction, and there have been methods that preserve
high-resolution information using skip connections and
encoder–decoder structures [19,20]. In addition, attempts
have been expended to widen the receptive field using
dilated convolution (atrous convolution) [11,21,22] or spa-
tial pyramidal pooling [13]. Semantic segmentation can be
useful with high accuracy; therefore, attempts have been
expended to boost performance through a network of
deep and complex structures [23,24] and self-attention
modules that reweight feature channels [25–27]. Light-
weight models have been created for real-time application
purposes, such as autonomous driving [28–30].

2.2 | Context information

Before the prevalence of deep learning, semantic segmen-
tation algorithms used context information from graph
structures, such as Markov and conditional random fields,
which helped improve label prediction or identify bound-
aries more accurately [31,32]. They use pixel or superpixel
features and can generate improved segmentation results
by constructing pairwise potentials in addition to the
unary potential, which is unrefined label information.
Even after deep learning became popular, attempts had
been expended to improve the segmentation results by
combining deep networks and random fields [10,33,34].

Convolution reflects the context between adjacent
pixels. CNNs, which run through multiple convolution
and downsampling layers, naturally contain context
information between distant pixels and are often used to
solve vision problems. Additional concepts can be used
to include additional contextual information. For exam-
ple, some aimed to enlarge the receptive field using
dilated convolution (atrous convolution) [11,20], some
aimed to fuse context at different feature levels by using a
multiresolution structure [13,35,36], and others suggested
networks of recurrent neural network (RNN) structures
to represent the long-range context [37,38].

Recently, multistage networks have been used for
computer vision tasks. This concept was first applied to
human pose estimation [39,40]. Since then, this concept
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has been applied to the field of semantic segmentation
[27,41]. A stacked deconvolutional network (SDN) [41]
stacks multiple shallow deconvolutional units with dense
connections to capture more contextual information and
make optimization easier. Cheng and others [27] pro-
posed a carefully designed encoder–decoder stacking
architecture with a semantic prediction guidance module.

The proposed refinement network is similar to the
aforementioned multistage networks for semantic seg-
mentation. Unlike multistage networks that require a
delicate design according to the encoder–decoder shape,
the proposed method simply extends to the same refiner–
combiner module type, which depends only on the num-
ber of segmentation classes. In addition, by training the
sequential supervision scheme, unlike the simultaneous
supervision scheme of existing methods, it is possible to
develop a real refinement network that supplements the
deficiencies in the backbone network.

3 | MATERIALS AND METHODS

This study aims to improve semantic segmentation models
to handle the context of the label itself. We developed a
context-refinement framework for semantic segmentation
that extends existing semantic segmentation models, and a
pretrained model can be used as a backbone network.
Various CNN-based semantic segmentation architectures
can be used as backbone networks; ERFNet [29],
ENet [42], HyperSeg [28], and DDRNet [43] were used in
this study. The proposed refinement structure begins by
feeding the output label map from the backbone network
(Figure 1). The “refiner” extracts the context information
of the label map entered, and the “combiner” adds the
resulting context information to the backbone network.
The proposed method uses a sequential supervision
scheme to supplement deficiencies in the backbone net-
work. A great advantage of the proposed method is that
performance can be improved consistently for any net-
work by using an existing pretrained network and adding
the same “refiner” and “combiner” structures.

In this section, we discuss the “refiner” and “com-
biner” structures first. Subsequently, we describe the
details of the refinement process for specific networks.

3.1 | Proposed context refinement
architecture

The proposed model is defined as follows.

O¼ cðrðFsjθrÞ,Fs�1jθcÞ, ð1Þ

where F and s, respectively, denote the feature map and
spatial resolution of the feature map corresponding to the
output label map. cð∗ jθcÞ and rð∗ jθrÞ are combiners with
parameter θc and refiners with parameter θr to compute
the final output O.

From the input image I �ℝ3�H�W (where H and W
denote the height and width of the input image, respec-
tively), the backbone network b generates feature maps
Fi, i� ½0,1,…,s� of different spatial resolutions i with
parameters θb:

F0,F1,…,Fs ¼ bðIjθbÞ: ð2Þ

The feature map Fs corresponding to the label map
was used as the input to the refiner. As the input of the
refiner is the label itself, the function of the refiner forces
the networks to generate label-contextual features for
semantic segmentation. The combiner is then passed
through the feature map Fs�1 of the subsequent s�1
levels, and the final result is the output (Figure 2).

3.1.1 | Refiner

The dotted red boxes in Figures 1 and 2A represent the
refiner. Refiners obtain richer contextual information by
combining the two types of contextual components.

In the left part of the refiner (Figure 2A), the context
is acquired through the so-called encoding–decoding of
label information. First, we used two downsampling
modules (Figure 2B) to enlarge the receptive field. The
downsampling modules consisted of 3�3 convolution
operations with stride two, batch normalization, and
ReLU operators. In addition, the dilated convolution
modules (Figure 2C) are followed by various dilation
rates of the convolution kernels. In our method, we used
3�3-dilated convolution with the dilation rates of 2, 4,
8, and 16. Subsequently, our refiner produced a feature
map that matched the resolution with that of the
feature map (that will be combined later) using an
upsampling module (Figure 2D) containing a transposed
convolution and a convolution module. The convolution
module is the same as the dilated convolution module
with a dilation rate of 1.

Because we only want to strengthen the context infor-
mation of the label through the refiner, the number of
channels in the feature map is the same as the number
of segment classes and does not change throughout the
entire duration of the left part. Therefore, the number of
parameters does not increase significantly compared with
the baseline network, which will be discussed later.
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On the right side of the refiner, the context of the
label information is obtained through a context-pooling
module (Figure 2E). To obtain the proper context, we
applied two-dimensional (2D) average-pooling operations
in H=8�W=8 regions with H=16�W=16 steps. Finally,
we combined the left and right parts of the refiner. The
atrous convolutional-based context information of the left
part was refined using the polling-based context informa-
tion of the right part.

As a major difference from multistage networks,
the proposed refinement module adds only the context
of the backbone network output feature. Therefore, the
number of channels for each layer is equal to the
number of semantic classes, which is the number of
channels of the backbone-network output feature,
without increasing or decreasing the number of chan-
nels. Existing multistage networks are stacked based
on the concept of encoder–decode–repetition; therefore,
the number of channels during encoding increases and
decreases again during decoding. As a result, the pro-
posed refinement network is more efficient in terms of

the number of parameters and graphical processing
unit (GPU) memory usage than existing multistage
networks.

3.1.2 | Combiner

The dotted green boxes in Figures 1 and 2A represent the
combiner. The combiner begins with a simple concatena-
tion of rðFsjθrÞ, a feature generated in the previous
refiner section, and Fs�1, a feature from the backbone
network at the ðs�1Þ resolution level. The final resulting
label map O was generated using a transposed
convolution.

3.2 | Network training with sequential
supervision

To refine the backbone network, we propose herein a
sequential supervision method.

F I GURE 2 Structure and layers of the proposed refiner and combiner. (A) Structure of the refiner and combiner. The refiner inputs the

output at the end of the backbone network. Accordingly, direct label information was input, and a wider receptive field could be ensured

based on two downsampling modules, and various contexts could be considered based on the dilated convolution modules. Average pooling

was used to create a variety of contexts. The combiner generates the final result by combining the resulting features in the refiner with the

features of the level which exists just before the final level of the backbone network. (B) Downsampling module, which consists of a 3 � 3

convolution operation of stride two, followed by batch normalization and a rectified linear unit (ReLU) operation. (C) Dilated convolution

module in which two convolution-batchnorm-ReLU combinations with residual connections are performed. (D) Upsampling module with a

transposed convolution followed by batch normalization and a ReLU operation. (E) Context pooling module with average pooling and

nearest upsampling.

826 AN ET AL.



The simultaneous supervision scheme (Figure 3A)
used in the existing multistage methods [27,41] can be
expressed by the following loss function,

arg min
θb,θr ,θc

lðO,GÞ þ αlðFs,GÞ, ð3Þ

where θb,θr ,θc denote the parameters of the backbone
network, refiner, and combiner, respectively. G denotes
the ground-truth label map, and O and Fs are the final
output feature map and the output feature map from the
backbone network, respectively. l denotes a loss function,
and α is a balancing coefficient between the two loss
functions related to O and Fs. Although the network form
is refined, this scheme does not guarantee that the actual
execution will be refined. θr and θc are trained such that
the final output O is equal to G; they are also trained
under the influence of θb such that the intermediate
result Fs is also equal to G. Even the hyperparameter α
requires an additional (laborious) workload to be deter-
mined experimentally.

The proposed sequential supervision begins training
using the given backbone-network parameters θb based
on the following equation.

arg min
θb

lðFs, GÞ: ð4Þ

Existing trained networks can be imported and used,
or training can be performed afresh. We then trained the
parameters of the combiner and refiner, θr and θc by
freezing parameter θb.

arg min
θr ,θc

lðO, GjθbÞ: ð5Þ

Training based in this manner makes it possible to
learn θr and θc which can obtain the final results by
refining the resulting features from the backbone
network.

3.2.1 | Two-phase training

To optimize (5), we actually use two training phases.
In the first phase, all the parameters θb, θr , and θc are

updated with the initial parameters θb. Although well-
trained backbone-network parameters θb are imported,
they are not optimized for the entire network; therefore,
they must be coordinated.

In the second phase, we freeze parameter θb and
update the remaining parameters θr and θc. In this case,
the initial learning rate was reduced by half compared
with the previous phase.

F I GURE 3 Network training with different supervision schemes. (A) Simultaneous supervision scheme used in the existing multistage

methods [27,41]. (B) Proposed sequential supervision scheme. In the simultaneous supervision scheme, θr and θc are not fully performing

the role of refinement owing to the influences of loss to improve the intermediate supervision outcome. Conversely, in the proposed

sequential supervision, it is trained to refine fully the results of the backbone network.
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3.3 | Network refinement with different
backbones

CRFNet has a practical benefit in that it can be applied to
any backbone network if the final label feature (Fs) and
the feature at the spatial level below that level (Fs�1) can
be obtained. In general, the number of feature channels
is the same as the number of segmentation classes at spa-
tial level s, and at the (s�1) level, the number varies
slightly from one network architecture to another. There-
fore, when applying the CRFNet architecture to the other
models, there was no significant change, except for the
feature dimension at the (s�1) level.

In the experimental section, we applied CRFNet to
four efficient networks: ERFNet [29], ENet [44], Hyper-
Seg [28], and DDRNet [43]. The ERFNet is an encoder–
decoder structure network that uses factorized one-
dimensional convolutions (3�1 and 1�3) to improve
computational efficiency with comparable accuracy;
ENet is an efficient network for real-time semantic seg-
mentation; HyperSeg is a relatively recent model that
uses encoder features to generate decoder parameters in
encoder–decoder structures; DDRNet consists of deep
dual-resolution babkbones and enhanced low-resolution
contextual information extractors with bilateral fusions
to generate high-quality details.

In the cases of ERFNet and ENet, the proposed
method (Figure 2) can be applied as is because they have
an encoder–decoder structure. In the case of HyperSeg,
although the decoder is slightly more complex in the case
of HyperSeg, it can still extract features from the last
layer and half-sized features from the preceding layer.
Therefore, the proposed method is applied. In the case of
DDRNet, the encoder–decoder structure may not be evi-
dent. However, it passes through a module called a seg-
mentation head, which consists of a 3�3 convolutional
layer, followed by a 1�1 convolutional layer, and pro-
duces the final segmentation result. This segmentation
head can be considered a type of decoder, and features
can be extracted both before and after the segmentation
head to apply the proposed method. Because the spatial
resolutions of the features before and after the segmenta-
tion head are the same, we replace the convolution mod-
ule in Figure 2 with an upsampling module and the
transposed convolution module with an additional seg-
mentation head module.

3.4 | Number of parameters

In the proposed CRFNet, only simple layers were added;
these consisted of the same number of convolution ker-
nels as the number of semantic classes. The number of

channels of deep layers in a baseline network was a
number of the order of hundreds (e.g., 128 or 256), and
the number of classes was a number of the order of
10 units (19 classes for Cityscapes and 11 classes for
CamVid).

In a simple convolution layer, if the number of input
channels is Ci, the number of output channels is Co, and
the filter size is K; the number of parameters Np in that
layer is as follows,

Np ¼ NwþNb,

Nw ¼ K2CiCo,

Nb ¼ Co,

ð6Þ

where Nw and Nb are the numbers of weights and biases,
respectively. Cx,x � fi,og is a number that is of the order of
hundred and 10 units in a baseline network and the pro-
posed “refiner-combiner” module, respectively. There-
fore, with the proposed CRFNet, the total number of
parameters compared with the baseline network
increased by only a few percentage units.

For example, in the case of ERFNet [29] with 1024�
512 Cityscapes dataset, the total number of parameters of
the model was approximately 2.06 M. For the proposed
CRF-ERFNet, the number of parameters was 2.14 M,
which was only 0.08 M more than the ERFNet. Similarly,
the computational complexity increased slightly from a
level similar to that of the baseline network (e.g., ERFNet
had 30.1 GMACs, and CRF-ERFNet had 35.1 GMACs).
The number of parameters and computational complex-
ity were measured using the THOP library, which is a
tool for counting the number of parameters and compu-
tational complexity.

4 | EXPERIMENTS

As mentioned previously, the proposed method was
developed to improve the performance of semantic seg-
mentation models for autonomous driving. Semantic
segmentation uses suitable benchmark datasets consist-
ing of data collected from vehicles [16-18,45,46].

To evaluate the effectiveness and robustness of the
proposed method, we used three publicly available
datasets for camera-based semantic segmentation:
Cityscapes [16], Camvid [17] and KITTI-360 [18].

Mean intersection-over-Union (mIoU) is an
extensively used evaluation metric in semantic segmenta-
tion. The definition of IoU for a particular class is,

IoU¼ TP
TPþFPþFN

, ð7Þ
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where TP, FP, and FN are the number of true positives,
false positives, and false negatives at the pixel level,
respectively. The mIoU was obtained by averaging the
IoU for all existing classes (19 classes in Cityscapes,
11 classes in Camvid, and 17 classes in the KITTI-360
datasets). We also report on the class IoU to observe the
effects of refinet on different classes. In this study,
the corresponding metric was expressed as a percentage.

Implementation details: Existing semantic segmen-
tation methods (e.g., ERFNet, ENet, and HyperSeg) and
the proposed CRFNet models were all implemented
using Pytorch (with CUDA 11.4) and cuDNN back-ends;
experiments were performed using 4� RTX A-6000
GPUs.In the cases of the Cityscapes and CamVid bench-
marks, we applied the following image augmentation
techniques: horizontal flipping with a probability of 0.5,
random hue and saturation jitter, random resize with a
scale range ½0:8,1:2�, random rotation with an angle range
½�10 ∘ ,10 ∘ � and image cropping. For KITTI-360, we used
only horizontal flipping and color jitter augmentation.

In the training step, the cross-entropy loss was used
to learn the networks for Cityscapes and KITTI-360, and
the Lovasz loss [42] was used to learn the networks for
CamVid. The Adam optimizer [47] was used, and the ini-
tial learning rate was 0.001 or 0.0005 in the first training
phase, and half in the second training phase.

In the cases of ERFNet and ENet, the backbone net-
work was trained afresh, and in the case of Hyperseg, the
Hyperseg-M model was used (among the models provided
by the author’s GitHub). In the DDRNet case, the DDRNet-
23-slim model was used and trained from scratch.

4.1 | Cityscapes

Cityscapes [16] is a collection of images and ground-truth
labels from the driver’s perspective. Cityscapes has 5000
finely annotated image pairs and 20 000 coarsely annotated
image pairs collected; however, the coarsely annotated
images were not used to train the model. The finely anno-
tated images comprised 2975 training images, 500 valida-
tion images, and 1525 test images. It contained 19 different
classes, and each image had a resolution of 2048�1024.

Table 1 presents an evaluation of the segmentation
accuracy of our method on the Cityscapes dataset. Exper-
iments were conducted using ERFnet [29], ENet [44],
HyperSeg [28], and DDRNet [43]. Overall, a significant
accuracy increase was observed. Similar or slightly
improved responses were observed in most classes, espe-
cially for objects such as riders, buses, and motorcycles.
In particular, for ENet, which had a relatively low perfor-
mance among the experimental models, the performance
improved for all classes. The lower the baseline T
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performance is, the greater the room for improvement in
the proposed refinement scheme will be.

Figure 4 illustrates the effectiveness of the proposed
refinement method using ERFNet. The proposed method
improves the overall performance and has characteristics
similar to those of RFs. Although the results were similar
to those of the baseline network, the label information
was somewhat smoothed and unified and the object
boundaries tended to be represented more clearly.

4.2 | CamVid

The CamVid dataset [17] is a road scene dataset compris-
ing 701 densely annotated images. It consisted of
367 training, 101 validation, and 233 test images. It con-
tained 11 semantic classes with a resolution of 960�720.

Table 2 lists the segmentation performances of the
proposed method. In this dataset, we experimented with
ERFnet and ENet, and in both cases, the overall perfor-
mance of almost all classes was improved. In particular,
objects with low IoU scores, such as signs and bicyclists,
improved more than others. In the cases of natural struc-
tures or structures with large shapes, performance
improvements were minor. In the case of the sky, the
IoU decreased, but the change was small.

4.3 | KITTI-360

KITTI-360 [18] is a recently released, large-scale dataset
containing high-quality 2D and three-dimensional (3D)
annotations. It consisted of 11 driving sequences, which
corresponded to distinct and continuous driving

F I GURE 4 Qualitative results of the proposed method to the Cityscapes validation set compared with the ground-truth labels and

original ERFNet: (A) input image, (B) ground truth, (C) ERFNet [29], and (D) proposed CRF-ERFNet (ours). The CRF-ERFNet result

(D) shows the label information of the object series more accurately compared with the result of the baseline ERFNet, and the boundary also

tends to appear clearly.

TAB L E 2 Performance comparison on the CamVid test set with different network structures.

Model Sky Building Pole Road Sidewalk Tree Sign Fence Car Pedestrian Bicyclist mIoU

ERFNet [29] 93.9 90.3 48.3 95.9 83.9 82.1 53.1 66.2 89.3 59.8 59.2 74.7

CA-ERFNet 93.9 90.8 50.6 96.5 85.3 82.2 55.6 67.6 91.3 63.5 63.6 76.4

ENet [44] 93.8 89.1 46.2 96.3 85.0 79.9 48.5 66.1 89.9 57.2 57.0 73.5

CA-ENet 93.7 90.2 48.9 96.4 85.4 81.7 51.8 67.8 91.5 62.1 64.6 75.8

Note: Experiments were performed with input images with sizes equal to 960�720. Among the original network and the CRF-network, the class that showed

higher performance was emphasized in bold.
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trajectories. Each sequence provided sensor data, including
a perspective stereo camera, a pair of fisheye cameras, Velo-
dyne, and SICK laser scanning. It also provided ground-
truth data for semantic segmentation, confidence scores,
and 3D bounding boxes. Nine sequences with ground-truth
semantic segmentation data paired with perspective cam-
era images suitable for semantic segmentation were used as
the dataset. There were 45 108 images in the training set;
these corresponded to sequence numbers 0, 2, 3, 4, 5, and
6, and the validation set consisted of 16 060 images that
corresponded to sequence numbers 7, 9, and 10. The
KITTI-360 dataset contained many overlapping and similar
data regarding the characteristics of sequence images.
Therefore, for efficient training, the sequences were sam-
pled in five frames for training and validation. Follow-
ing [18], 17 semantic labels were used (the same as those
used for Cityscapes, excluding the bus and train classes).

Table 3 lists the segmentation performances of the
proposed method. For this dataset, we experimented with
ERFnet and ENet. The KITTI-360 dataset consisted of
image sequences captured while driving, and there were
a few objects other than cars. This also affected the train-
ing; therefore, the overall recognition rate of objects other
than cars was low. Nevertheless, refining the network
using the proposed method works better on the backbone
network; in particular, the margin was larger in the
object family. Even in the case of bicycles, these were not
detected at all with ENet but were detected after refine-
ment. In the case of traffic lights, neither ERFNet nor
ENet models can find them, even after refinement; this
seems to be due to the small number of samples and
small sizes of the objects. The corresponding visual
results are shown in Figure 5. In the case of KITTI-360,
the ground truth image is superimposed on the original
image for readability because the height of an image is
low compared with other datasets.

4.4 | Ablation studies

Ablation studies were conducted using the Cityscapes
validation dataset.

4.4.1 | Effects of the two-phase training
procedure

To evaluate the effect of the two-phase training proce-
dure (described in Section 3.2), we compared first the
proposed context-refinement network with the same net-
work trained without a pretrained backbone network θb

and parameter freezing. We also demonstrate the perfor-
mance of the proposed two-phase training procedure by T
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comparing it with the results of training up to a single
phase. In Table 4, CRF-ERFNet and CRF-ENet are com-
pared. It is confirmed that the performances of both net-
works improve as each phase (using a pretrained
backbone network) and parameter freezing progresses.
Specifically, the ERFNet [29] scored 70.1 in terms of the
mIoU metric. When we trained the CRF-ERFNet (with-
out the pretrained backbone network), the score was
70.8; the improvement is minor compared with the origi-
nal ERFNet. However, following the proposed two-phase
training procedure, the performance improved in a step-
by-step manner.

4.4.2 | Comparison with simultaneously
supervised networks

To obtain supervised networks simultaneously, we per-
formed optimizations (3) with different hyperparameters

α. In Table 5, CRF-ERFNet and CRF-ENet are compared.
The hyperparameter α seems to have attained its optimal
value, and even if an appropriate value is set, the pro-
posed sequentially supervised network works better. Spe-
cifically, the ERFNet [29] and proposed CRF-ERFNet
mIoU scores are 70.1 and 72.6, respectively. When we
train CRFNet in a simultaneous supervision manner
using (3), a maximum performance of 71.6 can be
obtained with α¼ 0:5, and the other values yield lower
performance. However, even when the appropriate α
value was 0.5, the performance of the simultaneous
supervision method was inferior to that of the proposed
sequential supervision method.

4.4.3 | Experiments without a combiner

The proposed CRFNet consists of a refiner and a com-
biner. While the context information of the label is

F I GURE 5 Qualitative results of the proposed method to the KITTI-360 validation set compared with the ground-truth labels and

original ENet: (A) input image and corresponding ground truth, (B) ENet [44], and (C) proposed CRF-ENet (ours). The result of CRF-ENet

(C) shows the label information of the object series more accurately than the results of the baseline ENet. The color of the ignored label

during validation is set to black.

TAB L E 4 Performance comparison on the Cityscapes validation set using different training procedures for the proposed networks.

Model Pretrained Freezing Training phase mIoU

ERFNet [29] - - - 70.1

CRF-ERFNet No No 1 70.8

CRF-ERFNet Yes No 1 72.0

CRF-ERFNet Yes Yes 1, 2 72.6

ENet [44] - - - 61.5

CRF-ENet No No 1 62.6

CRF-ENet Yes No 1 65.7

CRF-ENet Yes Yes 1, 2 66.0
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extracted by the refiner, if it is not combined with the
original feature (through the use of the combiner), it
becomes an additional stack of simple and transposed
convolution layers. To observe the changes resulting from
the presence or absence of a combiner, experiments were
conducted using the Cityscapes dataset. In Table 6, it can
be observed that using a combiner that reuses the exist-
ing features yields better performance than using the
refiner independently for both ERFNet and ENet.

5 | CONCLUSION

We introduced a network refinement architecture suit-
able for semantic segmentation using parameter freezing.

By adding a refiner–combiner after a conventional
semantic segmentation network structure, the proposed
method can achieve additional performance improve-
ments. We demonstrated the effectiveness of the pro-
posed refinement structure on three benchmark datasets
which consisted of images captured from vehicles, and
experiments were conducted using real-time semantic
segmentation models suitable for autonomous driving.
Although sufficient context was extracted for perfor-
mance improvements, a simple refiner form was used. In
the future, we plan to experiment with refiner structures
that contain more contextual information.
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