Understanding how the topic evolves is an important and challenging task. A topic usually consists of multiple related events, and the accurate identification of event evolution relationship plays an important role in topic evolution analysis. Existing research has used the traditional vector space model to represent the event, which cannot be used to accurately compute the semantic similarity between events. This has led to poor performance in identifying event evolution relationship. This paper suggests constructing a semantic aspect-based vector space model to represent the event: First, use hierarchical Dirichlet process to mine the semantic aspects. Then, construct a semantic aspect-based vector space model according to these aspects. Finally, represent each event as a point and measure the semantic relatedness between events in the space. According to our evaluation experiments, the performance of our proposed technique is promising and significantly outperforms the baseline methods.
Semantic object model has widely been recognized as an alternative data modeling approach to entity-relationship model for database system design. In this study, we have presented a semantic object model for intermediary type shopping mall consisting of multiple buyers and sellers. Essential processes and information with regard to the customer management, product management, price estimation, product order etc. have been considered for this study. Upon careful examination and analysis of them, a detailed semantic objects and attributes have been drawn and structured into semantic object diagrams. The final objects were converted into an entity-relationship diagram so that intuitive comparison could be made for relational database design. The results in this study may form a conceptual framework for both academic concerns and more complicated system applications.
시맨틱 관계성은 포맷되지 않은 많은 문서 객체들을 계층적으로 구조화한다. 그러나 분산 응용도메인에서 관련 데이터를 추출하여 구조화하기란 쉽지 않는 일이다. 이러한 문제를 해결하기 위하여 본 논문에서는 분산된 응용 도메인 객체들을 서비스할 수 있도록 시멘틱 참조 관련성을 이용한 새로운 객체 관리 기법을 제안하였다. 제안된 기법은 응용 도메인 객체들로부터 시멘틱 유사성을 추출하기 위하여 프로파일 구조를 이용하였으며, 추출된 객체들의 시멘틱 관계성을 결정하기 위하여 joint matrix를 이용하였다. 제안된 기법의 성능을 알아보기 위하여 시뮬레이션을 수행하였으며, 시뮬레이션 결과 제안된 기법이 기존의 텍스트 마이닝 기법과 정보추출기법에 비해서 검색 성능이 우수함을 알게 되었다.
Users are sharing many of contents such as text, image, video, and so on in SNS. There are various information as like as personal interesting, opinion, and relationship in social media contents. Therefore, many of recommendation systems or search systems are being developed through analysis of social media contents. In order to extract subject-related topics of social context being collected from social media channels in developing those system, it is necessary to develop ontologies for semantic analysis. However, it is difficult to develop formal ontology because social media contents have the characteristics of non-formal data. Therefore, we develop a social topic system based on semantic and subject correlation. First of all, an extracting system of social topic based on semantic relationship analyzes semantic correlation and then extracts topics expressing semantic information of corresponding social context. Because the possibility of developing formal ontology expressing fully semantic information of various areas is limited, we develop a self-extensible architecture of ontology for semantic correlation. And then, a classifier of social contents and feed back classifies equivalent subject's social contents and feedbacks for extracting social topics according semantic correlation. The result of analyzing social contents and feedbacks extracts subject keyword, and index by measuring the degree of association based on social topic's semantic correlation. Deep Learning is applied into the process of indexing for improving accuracy and performance of mapping analysis of subject's extracting and semantic correlation. We expect that proposed system provides customized contents for users as well as optimized searching results because of analyzing semantic and subject correlation.
Because UMLS semantic network is bulky and complex, user hard to understand and has shortcoming that can not express all semantic network on screen. To solve this problem, rules to dismember semantic network efficiently are introduction. but there is shortcoming that this should classifies manually applying rule whenever UMLS semantic network is modified. Suggest automatic clustering method of UMLS semantic network that use genetic algorithm to solve this problem. Proposed method uses Linked semantic relationship between each semantic type and semantic network does clustering by structurally similar semantic type linkages. To estimate the performance of suggested method, we compared it with result of clustering method by rule.
이동 컴퓨팅(mobile computing) 환경이 가지는 통신 대역의 협소함과 이동 기기의 에너지 제약 때문에 데이타 베이스 서버에서 다수의 이동 클라이언트로 데이타를 전달할 때는 브로드캐스트 (broadcast)가 효과적이다. 기존의 여러 가지 브로드캐스트 방법은 클라이언트의 데이타 접근 빈도(access frequency)를 이용하여 전송 스케줄을 정하거나, 데이타들의 시맨틱 관계(semantic relationship)를 이용하여 전송 스케줄을 결정하였다. 데이타의 접근 빈도만을 반영하는 경우 클라이언트들이 접근하는 데이타들의 의미적 관계를 고려하지 않으므로 클라이언트가 밀접한 시맨틱 관계를 갖는 데이타를 차례로 접근해야 하는 경우 오랜 시간 동안 무선 채널을 듣고 있어야 한다. 시맨틱 관계만을 반영하여 전송 스케줄을 작성하면, 클라이언트가 시맨틱 관계는 없으나 접근 빈도가 높은 특정 데이타를 자주 접근할 필요가 있는 경우, 클라이언트의 데이타 접근 시간이 길어지게 된다. 이 논문에서는 데이타 접근 빈도와 시맨틱 관계를 함께 반영하여 이동 클라이언트의 데이타 접근 시간을 개선한 효율적인 하이브리드 데이타 브로드캐스트 방법을 제안한다. 우리가 제안하는 하이브리드 브로드캐스트 방법은 데이타 접근 빈도에 의해 브로드캐스트 스케줄을 생성한 후, 스케줄 상 데이타 전송 위치를 시맨틱 관계에 따라 조정한다. 시뮬레이션을 통해 기존의 방법들과 성능을 비교 분석하여 우리의 방법이 효율적임을 보인다.
본 연구는 현행의 용어관계가 가진 문제점을 파악하기 위하여 용어관계의 다양한 사례를 조사 분석하고 이를 바탕으로 용어관계를 체계화하고자 하였다. 이를 위해 용어관계가 기반이 되는 분류, 시소러스, 주제명표목을 비롯하여 의미망, 온톨로지, 데이터베이스 등 기존의 여러 지식조직체계를 용어관계의 측면에서 재조명하여 그 특성 및 상호관계를 파악하였다. 또한 이들 지식조직체계에 실질적으로 나타나는 각종 용어관계의 사례와 용어관계에 대한 연구들을 광범위하게 수집하여 다양한 용어관계의 유형을 파악하였다. 이렇게 수집된 다양한 용어관계를 분석하여 실재하는 용어관계의 체계화 방안을 모색하였다.
본 논문은 비음수 행렬 분해와 퍼지 관계를 이용한 새로운 문서군집 방법을 제안한다. 제안된 방법은 비음수 행렬 분해된 의미특징을 이용하여 군집 레이블과 군집의 대표 용어들을 선택함으로서 문서군집의 내부구조를 더 잘 표현할 수 있으며, 퍼지 관계 값을 이용한 군집은 문서군집에 유사하지 않은 문서를 더 잘 구분함으로써 문서군집의 성능을 높일 수 있다. 실험결과 제안방법을 적용한 문서군집방법이 다른 문서군집 방법에 비하여 좋은 성능을 보인다.
많은 양의 문서 데이터가 증가됨에 따라 사용자는 해당 문서를 이해하기 위한 요약된 정보를 필요로 한다. 그러나, 기존 문서 요약 연구 방법들은 지나치게 단순한 통계에 의존함으로써 문장의 모호성 및 의미 있는 문장 생성을 위한 다중 문서 요약 연구가 미흡한 실정이다. 본 논문에서는 의미적 연결 관계에 대한 파악 및 불필요한 정보를 처리하기 위한 전처리 과정을 거치며, 어휘 의미 패턴 정보를 기반으로 VAE를 이용하여 문장 간의 의미적 연결성을 높인 다중 문서 요약 기법을 제안하였다. 문장을 이루고 있는 단어 벡터들을 이용하여, 잠재된 변수로 생성된 압축된 정보와 속성 판별기로부터 학습을 한 후 문장을 재구성함으로써 의미적 연결 처리가 자연스러운 요약문을 생성하였다. 제안된 방법과 다른 문서 요약 방법을 비교했을 시 미세하지만 더 향상된 성능을 나타냈으며, 이는 의미적 문장 생성 및 연결성을 높일 수 있음을 증명하였다. 앞으로, 다양한 속성 설정 값을 가지고 실험하여 의미적 연결 관계를 확장할 수 있는 방법을 연구하고자 한다.
International Journal of Internet, Broadcasting and Communication
/
제15권1호
/
pp.222-230
/
2023
The purpose of this study is to provide basic data on sports entertainment programs by collecting data on unstructured data generated by Naver and Google for SBS entertainment program 'Women Who Score Goal', which began regular broadcast in June 2021, and analyzing public perceptions through data mining, semantic matrix, and CONCOR analysis. Data collection was conducted using Textom, and 27,911 cases of data accumulated for 16 months from June 16, 2021 to October 15, 2022. For the collected data, 80 key keywords related to 'Kick a Goal' were derived through simple frequency and TF-IDF analysis through data mining. Semantic network analysis was conducted to analyze the relationship between the top 80 keywords analyzed through this process. The centrality was derived through the UCINET 6.0 program using NetDraw of UCINET 6.0, understanding the characteristics of the network, and visualizing the connection relationship between keywords to express it clearly. CONCOR analysis was conducted to derive a cluster of words with similar characteristics based on the semantic network. As a result of the analysis, it was analyzed as a 'program' cluster related to the broadcast content of 'Kick a Goal' and a 'Soccer' cluster, a sports event of 'Kick a Goal'. In addition to the scenes about the game of the cast, it was analyzed as an 'Everyday Life' cluster about training and daily life, and a cluster about 'Broadcast Manipulation' that disappointed viewers with manipulation of the game content.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.