• Title/Summary/Keyword: Semantic Knowledge-based Model

Search Result 114, Processing Time 0.022 seconds

A Semantic Similarity Decision Using Ontology Model Base On New N-ary Relation Design (새로운 N-ary 관계 디자인 기반의 온톨로지 모델을 이용한 문장의미결정)

  • Kim, Su-Kyoung;Ahn, Kee-Hong;Choi, Ho-Jin
    • Journal of the Korean Society for information Management
    • /
    • v.25 no.4
    • /
    • pp.43-66
    • /
    • 2008
  • Currently be proceeded a lot of researchers for 'user information demand description' for interface of an information retrieval system or Web search engines, but user information demand description for a natural language form is a difficult situation. These reasons are as they cannot provide the semantic similarity that an information retrieval model can be completely satisfied with variety regarding an information demand expression and semantic relevance for user information description. Therefore, this study using the description logic that is a knowledge representation base of OWL and a vector model-based weight between concept, and to be able to satisfy variety regarding an information demand expression and semantic relevance proposes a decision way for perfect assistances of user information demand description. The experiment results by proposed method, semantic similarity of a polyseme and a synonym showed with excellent performance in decision.

A comparative study of Entity-Grid and LSA models on Korean sentence ordering (한국어 텍스트 문장정렬을 위한 개체격자 접근법과 LSA 기반 접근법의 활용연구)

  • Kim, Youngsam;Kim, Hong-Gee;Shin, Hyopil
    • Korean Journal of Cognitive Science
    • /
    • v.24 no.4
    • /
    • pp.301-321
    • /
    • 2013
  • For the task of sentence ordering, this paper attempts to utilize the Entity-Grid model, a type of entity-based modeling approach, as well as Latent Semantic analysis, which is based on vector space modeling, The task is well known as one of the fundamental tools used to measure text coherence and to enhance text generation processes. For the implementation of the Entity-Grid model, we attempt to use the syntactic roles of the nouns in the Korean text for the ordering task, and measure its impact on the result, since its contribution has been discussed in previous research. Contrary to the case of German, it shows a positive result. In order to obtain the information on the syntactic roles, we use a strategy of using Korean case-markers for the nouns. As a result, it is revealed that the cues can be helpful to measure text coherence. In addition, we compare the results with the ones of the LSA-based model, discussing the advantages and disadvantages of the models, and options for future studies.

  • PDF

Designing an Architecture for Social Semantic Digital Libraries(SSDL) (이용자 참여형 시맨틱 디지털도서관 아키텍처 설계)

  • Oh, Sam-Gyun;Won, Sun-Min
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.18 no.2
    • /
    • pp.229-251
    • /
    • 2007
  • The change in information technology demands drastic change in digital library service. This study defines what a social semantic digital library should consist of and proposes a new architecture that incorporates core functions needed in designing a SSDL. The SSDL supports semantic information processing based on metadata and ontology and is an innovation system that allows SSDL users to participate in generating new knowledge by interacting with existing metadata and ontology structures. This study designed a SSDL model that consists of five horizontal and two vertical structures.

an Automatic Transformation Process for Generating Multi-aspect Social IoT Ontology (다면적 소셜 IoT 도메인 온톨로지 생성을 위한 온톨로지 스키마 변환 프로세스)

  • Kim, SuKyung;Ahn, KeeHong;Kim, GunWoo
    • Smart Media Journal
    • /
    • v.3 no.3
    • /
    • pp.20-25
    • /
    • 2014
  • This research proposes a concept of multi-aspect Social IoT platform that enables human, machine and service to communicate smoothly among them, as well as a means of an automatic process for transforming exiting domain knowledge representation to generic ontology representation used in the platform. Current research focuses on building a machine-based service interoperability using sensor ontology and device ontology. However, to the best of our knowledge, the research on building a semantic model reflecting multi-aspects among human, machine, and service seems to be very insufficient. Therefor, in the research we first build a multi-aspect ontology schema to transform the representation used in each domain as a part of IoT into ontology-based representation, and then develop an automatic process of generating multi-aspect IoT ontology from the domain knowledge based on the schema.

Ontology Matching Method Based on Word Embedding and Structural Similarity

  • Hongzhou Duan;Yuxiang Sun;Yongju Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.75-88
    • /
    • 2023
  • In a specific domain, experts have different understanding of domain knowledge or different purpose of constructing ontology. These will lead to multiple different ontologies in the domain. This phenomenon is called the ontology heterogeneity. For research fields that require cross-ontology operations such as knowledge fusion and knowledge reasoning, the ontology heterogeneity has caused certain difficulties for research. In this paper, we propose a novel ontology matching model that combines word embedding and a concatenated continuous bag-of-words model. Our goal is to improve word vectors and distinguish the semantic similarity and descriptive associations. Moreover, we make the most of textual and structural information from the ontology and external resources. We represent the ontology as a graph and use the SimRank algorithm to calculate the structural similarity. Our approach employs a similarity queue to achieve one-to-many matching results which provide a wider range of insights for subsequent mining and analysis. This enhances and refines the methodology used in ontology matching.

PASS: A Parallel Speech Understanding System

  • Chung, Sang-Hwa
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 1996
  • A key issue in spoken language processing has become the integration of speech understanding and natural language processing(NLP). This paper presents a parallel computational model for the integration of speech and NLP. The model adopts a hierarchically-structured knowledge base and memory-based parsing techniques. Processing is carried out by passing multiple markers in parallel through the knowledge base. Speech-specific problems such as insertion, deletion, and substitution have been analyzed and their parallel solutions are provided. The complete system has been implemented on the Semantic Network Array Processor(SNAP) and is operational. Results show an 80% sentence recognition rate for the Air Traffic Control domain. Moreover, a 15-fold speed-up can be obtained over an identical sequential implementation with an increasing speed advantage as the size of the knowledge base grows.

  • PDF

A hierarchical semantic segmentation framework for computer vision-based bridge damage detection

  • Jingxiao Liu;Yujie Wei ;Bingqing Chen;Hae Young Noh
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.325-334
    • /
    • 2023
  • Computer vision-based damage detection enables non-contact, efficient and low-cost bridge health monitoring, which reduces the need for labor-intensive manual inspection or that for a large number of on-site sensing instruments. By leveraging recent semantic segmentation approaches, we can detect regions of critical structural components and identify damages at pixel level on images. However, existing methods perform poorly when detecting small and thin damages (e.g., cracks); the problem is exacerbated by imbalanced samples. To this end, we incorporate domain knowledge to introduce a hierarchical semantic segmentation framework that imposes a hierarchical semantic relationship between component categories and damage types. For instance, certain types of concrete cracks are only present on bridge columns, and therefore the noncolumn region may be masked out when detecting such damages. In this way, the damage detection model focuses on extracting features from relevant structural components and avoid those from irrelevant regions. We also utilize multi-scale augmentation to preserve contextual information of each image, without losing the ability to handle small and/or thin damages. In addition, our framework employs an importance sampling, where images with rare components are sampled more often, to address sample imbalance. We evaluated our framework on a public synthetic dataset that consists of 2,000 railway bridges. Our framework achieves a 0.836 mean intersection over union (IoU) for structural component segmentation and a 0.483 mean IoU for damage segmentation. Our results have in total 5% and 18% improvements for the structural component segmentation and damage segmentation tasks, respectively, compared to the best-performing baseline model.

A Business Operating System Architecture based on Semantic Web and Web Service (시맨틱 웹과 웹 서비스 기반의 비즈니스운영체계 아키텍처)

  • Choe, Mi-Yeong;Bang, Chan-Seok;Gwon, Jeong-Min;Choe, In-Jun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.429-435
    • /
    • 2005
  • True process collaboration can be accomplished through seamless integration of business processes and enterprise knowledge. Therefore, it is natural that the concept of Business Operating System (BOS), proposed by Delphi Group in 1994, is currently considered as a next evolutionary step for Business Process Management System (BPMS). Literature reports very little work, however, especially, on a comprehensive architecture of the system. This paper proposes an architecture of BOS with the following definition: ' BOS is an intelligent activity supporting system that provides a comprehensive and personalized work environment to each knowledge-intensive worker. ' To propose an architecture of BOS, the paper first identifies and classifies functional requirements for Business Operating System. Then, it proposes a data model and an architecture of the system to satisfy the functional requirements. The proposed architecture focuses on two essential technical requirements. First, the system should provide an effective means to integrate data and processes and to standardize distributed component systems. Secondly, the system should also be intelligent enough to assist workers to perform their knowledge-intensive work. The paper shows how these requirements can be achieved by using Semantic Web and Web Service.

  • PDF

Intention Classification for Retrieval of Health Questions

  • Liu, Rey-Long
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.7 no.1
    • /
    • pp.101-120
    • /
    • 2017
  • Healthcare professionals have edited many health questions (HQs) and their answers for healthcare consumers on the Internet. The HQs provide both readable and reliable health information, and hence retrieval of those HQs that are relevant to a given question is essential for health education and promotion through the Internet. However, retrieval of relevant HQs needs to be based on the recognition of the intention of each HQ, which is difficult to be done by predefining syntactic and semantic rules. We thus model the intention recognition problem as a text classification problem, and develop two techniques to improve a learning-based text classifier for the problem. The two techniques improve the classifier by location-based and area-based feature weightings, respectively. Experimental results show that, the two techniques can work together to significantly improve a Support Vector Machine classifier in both the recognition of HQ intentions and the retrieval of relevant HQs.

XOB: An XMDR-based Ontology Builder (XOB: XMDR 기반의 온톨로지 생성 시스템)

  • Lee, Suk-Hoon;Jeong, Dong-Won;Kim, Jang-Won;Baik, Doo-Kwon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.9
    • /
    • pp.904-917
    • /
    • 2010
  • Much research on ontology has been done during the last decade in order to represent knowledge and connect data semantically in AI and Semantic Web areas. However, ontologies might be represented and defined in different ways depending on knowledge and intention of users. It causes heterogeneity problem that the same concept can be differently expressed. This paper introduces a XOB (XMDR-based Ontology Builder) system based on XMDR to resolve the problem. XOB creates ontologies by reusing classes and relations defined in XMDR. XOB therefore is able to either solve or minimize the heterogeneity problem among ontologies. This paper introduces the conceptual model and overall architecture of the proposed system XOB. This paper defines the process, algorithm, ontology generation rule that is required to create ontologies by using concepts registered in XMDR. Our proposal supports higher standardization than the previous approaches, and it provides many advantages such as consistent concept usage, easy semantic exchange, and so on. Therefore, XOB enables high-quality ontology creation and reduces cost for ontology integration and system development.