• 제목/요약/키워드: Seller Recommendation

검색결과 16건 처리시간 0.02초

사서추천제도와 베스트셀러 목록의 활용성에 관한 연구 (A Study on the Utilization of Librarian Recommendation System and Bestseller List)

  • 남영준
    • 정보관리학회지
    • /
    • 제38권3호
    • /
    • pp.311-334
    • /
    • 2021
  • 이 연구의 목적은 합리적인 장서관리정책 수립을 위한 이론적 근거와 계량화된 객관적 기준점 제시이다. 본 연구의 연구결과를 요약하면 다음과 같다. 스테디셀러는 정기간행물 형태의 학습서가 대부분이었다. 또한, 현대소설로서 스테디셀러는 특정 작가에 의존하는 현상을 확인할 수 있었다. 베스트셀러는 출판사와 저자의 영향을 받는 것으로 조사되었다. 특히 만화와 아동용 교재를 출판하는 출판사의 도서는 베스트셀러 선정에 상당부분 상관성을 갖고 있었다. 추천된 도서 한 권당 추천 도서의 대출 수 평균은 14,871권이었으며, 베스트셀러로 선정된 도서 한 권당 평균 대출 수는 53,531권이었다. 한편 대출데이터를 기준으로 약 80~82%의 도서가 전체 상위권 대출의 90%를 감당하고 있고, 약 27~29%의 도서가 전체 상위권 대출의 50%를 감당하고 있었다. 이는 일련의 파레토법칙이 공공도서관 대출패턴에서도 굳건히 적용될 수 있음을 보여주고 있다. 문학의 대출은 전체 대출에서 50.6%를 차지하였으며, 문학 중에서 한국문학작품이 전체 51.3%를 차지하였다. 자연과학은 다른 주제분야에 비해 상대적으로 작은 수의 문헌으로 더 많은 대출을 발생시키고 있었다.

카테고리 연관 규칙 마이닝을 활용한 추천 정확도 향상 기법 (A Study on the Improvement of Recommendation Accuracy by Using Category Association Rule Mining)

  • 이동원
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.27-42
    • /
    • 2020
  • 인터넷이라는 가상 공간을 활용함으로써 물리적 공간의 제약을 갖는 오프라인 쇼핑의 한계를 넘어선 온라인 쇼핑은 다양한 기호를 가진 소비자를 만족시킬 수 있는 수많은 상품을 진열할 수 있게 되었다. 그러나, 이는 역설적으로 소비자가 구매의사결정 과정에서 너무 많은 대안을 비교 평가해야 하는 어려움을 겪게 함으로써 오히려 상품 선택을 방해하는 원인이 되기도 한다. 이런 부작용을 해소하기 위한 노력으로서, 연관 상품 추천은 수많은 상품을 다루는 온라인 상거래에서 소비자의 구매의사결정 과정 중 정보탐색 및 대안평가에 소요되는 시간과 노력을 줄여주고 이탈을 방지하며 판매자의 매출 증대에 기여할 수 있다. 연관 상품 추천에 사용되는 연관 규칙 마이닝 기법은 통계적 방법을 통해 주문과 같은 거래 데이터로부터 서로 연관성 높은 상품을 효과적으로 발견할 수 있다. 하지만, 이 기법은 거래 건수를 기반으로 하므로, 잠재적으로 판매 가능성이 높을지라도 충분한 거래 건수가 확보되지 못한 상품은 추천 목록에서 누락될 수 있다. 이렇게 추천 시 제외된 상품은 소비자에게 구매될 수 있는 충분한 기회를 확보하지 못할 수 있으며, 또 다시 다른 상품에 비해 상대적으로 낮은 추천 기회를 얻는 악순환을 겪을 수도 있다. 본 연구는 구매의사결정이 결국 상품이 지닌 속성에 대한 사용자의 평가를 기반으로 한다는 점에 착안하여, 추천 시 상품의 속성을 반영하면 소비자가 특정 상품을 선택할 확률을 좀더 정확하게 예측할 수 있다는 점을 추천 시스템에 반영하기 위한 목적으로 수행되었다. 즉, 어떤 상품 페이지를 방문한 소비자는 그 상품이 지닌 속성들에 어느 정도 관심을 보인 것이며 추천 시스템은 이런 속성들을 기반으로 연관성을 지닌 상품을 더 정교하게 찾을 수 있다는 것이다. 상품의 주요 속성의 하나로서, 카테고리는 두 상품 간에 아직 드러나지 않은 잠재적인 연관성을 찾기에 적합한 대상이 될 수 있다고 판단하였다. 본 연구는 연관 상품 추천에 상품 간의 연관성뿐만 아니라 카테고리 간의 연관성을 추가로 반영함으로써 추천의 정확도를 높일 수 있는 예측모형을 개발하였고, 온라인 쇼핑몰로부터 수집된 주문 데이터를 활용하여 이루어진 실험은 기존 모형에 비해 추천 성능이 개선됨을 보였다. 실무적인 관점에서 볼 때, 본 연구는 소비자의 구매 만족도를 향상시키고 판매자의 매출을 증가시키는 데에 기여할 수 있을 것으로 기대된다.

BERT 기반 감성분석을 이용한 추천시스템 (Recommender system using BERT sentiment analysis)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제27권2호
    • /
    • pp.1-15
    • /
    • 2021
  • 추천시스템은 사용자의 기호를 파악하여 물품 구매 결정을 도와주는 역할을 할 뿐만 아니라, 비즈니스 전략의 관점에서도 중요한 역할을 하기에 많은 기업과 기관에서 관심을 갖고 있다. 최근에는 다양한 추천시스템 연구 중에서도 NLP와 딥러닝 등을 결합한 하이브리드 추천시스템 연구가 증가하고 있다. NLP를 이용한 감성분석은 사용자 리뷰 데이터가 증가함에 따라 2000년대 중반부터 활용되기 시작하였지만, 기계학습 기반 텍스트 분류를 통해서는 텍스트의 특성을 완전히 고려하기 어렵기 때문에 리뷰의 정보를 식별하기 어려운 단점을 갖고 있다. 본 연구에서는 기계학습의 단점을 보완하기 위하여 BERT 기반 감성분석을 활용한 추천시스템을 제안하고자 한다. 비교 모형은 Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units)를 기반으로 하는 추천 모형이며, 실제 데이터에 대한 분석 결과, BERT를 기반으로 하는 추천시스템의 성과가 가장 우수한 것으로 나타났다.

시판(市販) 브래지어 판매실태(販賣實態) 연구(硏究) -老年女性用(노년여성용) 브래지어 판매(販賣)를 중심(中心)으로- (A Study on the Sale Conditions of the Current Brassiere Products - Focusing on the Sale of Brassiere for the Elderly Women -)

  • 박은미;김영숙;손희순
    • 패션비즈니스
    • /
    • 제1권3호
    • /
    • pp.60-70
    • /
    • 1997
  • The purpose of this study is to survey the sales of brassieres positively those of elderly women's (aged 50 or older) ones in particular through 72 sales outlets and thereby, in order to present the more comfortable brassiere models which can serve to reinstate elderly women's constitution and provide the useful basic data to brassiere makers and distributors for their business. The results of this survey and the suggestions therefrom can be summarized as follows; 1) Brassieres usually sell at 10,000-20,000 wons, which allows for 15% or more margin rate. Brassieres are disposed through bargain sales once or twice every year where their price are discount 10% or higher. Meanwhile, the majority of the brassieres distributors maintain more than 15% stock rate. The accumulated stocks are primarily disposed through return to makers or bargain sales. About 15% of the brassieres sold are returned by consumers to distributors to be replaced. 2) About a half of distributors operate some or other types of sales education programs. Most of these distributors feel that their educational program have been effective which suggests the effectiveness of sales educational program. On the other hand, 83.3% of the distributors operate in-house repair shops, while the absolute majority of them brief their customers on how to wear brassieres or clean them. 3) Because elderly women's understanding of brassieres sizes is very poor, they tend to ask help of the 'sales people about their sizes before purchasing and proper one personally. In other words, it has been disclosed that old women respond positively to seller's recommendation for their brassiere sizes. 4) It has been found that the brasseries sizes purchased by old women most are. 85A, 90A and 85B in their order, which suggests that the most popular size for under bust circumference is 85~90cm, while their primary cup size is "A". 5) The type of brasseries favored most by elderly women is the "full-cup" type, while their most favorite brassiere design is a soft and simple one. The colors preferred most by them are white, beige and pink in their order. 6) When being consulted by elderly women, sales people experience various difficulties due to their poor understanding of sizes and complaint about prices. Lastly, it has been found through this survey that elderly women want to see some sales promotion material featuring their brassiere sizes and their production arid ask the brasseries makers to produce more diverse brasseries sizes.

  • PDF

협력필터링과 사회연결망을 이용한 신규고객 추천방법에 대한 연구 (The Research on Recommender for New Customers Using Collaborative Filtering and Social Network Analysis)

  • 신창훈;이지원;양한나;최일영
    • 지능정보연구
    • /
    • 제18권4호
    • /
    • pp.19-42
    • /
    • 2012
  • 고객이 상품을 구매하는 패턴이 빠르게 변화하고 있다. 오프라인에서 고객이 직접 상품을 보고, 체험한 후 구매하던 패턴이 TV홈쇼핑, 인터넷 쇼핑 등 고객이 편리한 장소에서 자유롭게 구매하는 방법으로 확산되었다. 이처럼 구매 가능한 상품의 범위는 점점 더 다양해지고 있지만 이로 인하여 고객이 상품을 구매할 때 생기는 번거로움은 더욱 커지고 있다. 오프라인에서는 물건을 직접보고 구매하기 때문에 반품율이 낮은 반면에 온라인 구매 물품은 배송과 환불 등에서 복잡한 일들이 많이 발생한다. 온라인을 통해서 물건을 구매할 때 상품에 대한 사전 정보는 매우 한정적이며 실제로 물건을 구매했을 경우 고객이 생각했던 것과 다를 수 있다. 이러한 결과는 결국 고객의 불만족 및 구매취소로 이어진다. 또한 TV홈쇼핑이나 인터넷 쇼핑 등을 통해서 물건을 구매할 때 고객들은 이미 상품을 구매한 고객의 리뷰에도 관심을 기울이고 있다. 좋은 평가를 받은 상품은 더 많은 매출로 이어질 수 있기 때문에 기업은 이에 관심을 기울일 필요가 있다. 고객의 욕구를 만족시킬 수 있는 적절한 상품을 추천해 주고 이를 구매로 연결시키는 것은 기업의 이윤 창출과 직결되기 때문에 그 중요성이 강조된다. 고객을 위한 추천방법은 베스트셀러기반 추천방법, 인구통계 정보기반 추천방법, 최소질의대상 상품결정방법, 내용필터링기법, 협력필터링기법 등이 존재하며, 이에 대한 많은 연구가 활발하게 진행되고 있다. 그러나 위의 방법들을 신규고객에게 적용하는 것에는 문제가 발생할 수 있다. 신규고객은 상품에 대한 과거 구매이력이 존재하지 않기 때문이다. 이를 해결하기 위한 방안으로 가입 시, 고객의 인구통계적 정보나 선호도에 대한 응답을 유도하는 방법을 활용할 수 있다. 그러나 고객이 이에 대한 번거로움을 느낄 수도 있으며, 불완전한 답변을 하게 되면 추천의 정확도는 감소한다. 최근 이미 상품을 구매한 고객의 리뷰 및 기업에서 추천하는 제품에 의존하는 고객들이 증가하면서 이를 악용하는 사례도 자주 등장한다. 결국 추천에 대한 고객들의 신뢰는 감소하게 될 것이다. 따라서 좀 더 명확한 방식의 추천시스템이 절실하며, 이것이 개선된다면 는 곧 고객들의 신뢰 증가로 이어질 것이다. 본 연구에서는 협력필터링기법과 사회연결망기법의 중심성을 결합한 분석을 시도하였다. 중심성은 신규고객의 선호도를 기존고객들의 데이터를 통하여 유추하기 위하여 활용되는 정보이다. 기존 연구들에서는 기존고객들의 구매 가운데 구매성향이 유사한 고객들의 정보에 초점을 맞추고 있으며 구매성향이 다른 고객들의 정보에 대한 분석은 이루어지고 있지 않다. 그러나 이처럼 구매성향이 서로 다른 고객들의 정보를 활용한다면 추천의 정확성이 더 향상되지 않을까 하는 점을 기반으로 데이터들을 다양한 방식으로 분석하였다. 연구에 사용된 데이터는 미네소타대학의 GroupLens Research Project팀이 협력필터링기법을 통하여 영화를 추천하기 위해 만든 MovieLens의 데이터이다. 이는 1,684편의 영화에 대한 선호도를 943명이 응답한 정보로 총 100,000개의 데이터가 있다. 이를 시간 순으로 구분하여 초기 50,000개의 데이터를 기존고객의 데이터로, 후기 50,000개의 데이터를 신규고객의 데이터로 사용하였다. 이 때, 신규고객과 기존고객은 연구자가 임의로 구분한 것이다. 따라서 신규고객이라고 표현되는 고객의 데이터는 실제로 추천시스템을 통해 정보를 제공받은 고객이라고는 볼 수 없다. 그러나 현실적으로 실제 신규고객의 데이터를 수집하는 것이 쉽지 않기 때문에 전체 고객의 정보를 시간 순으로 구분하고 신규고객으로 분류한 것임을 밝혀둔다. 제시된 추천시스템은 [+]집단 추천시스템, [-]집단 추천시스템, 통합 추천시스템으로 총 3가지이다. [+]집단 추천시스템은 기존의 연구들과 유사한 방식으로 유사도가 높은 고객들을 신규고객의 이웃고객으로 분석하였다. 유사도가 높다는 것은 다른 고객들과 상품 구매에 대한 성향이 유사한 것을 의미한다. 또한 [-]집단 추천시스템은 유사도가 낮고 다른 고객들과 상품의 구매패턴이 반대에 가까운 고객들의 데이터를 활용하였으며, 통합 추천시스템은 [+]집단 추천시스템과 [-]집단 추천시스템을 결합한 방식이다. [+]집단 추천시스템과 [-]집단 추천시스템에서 각각 추천된 영화 가운데 중복되는 영화만을 신규고객에게 추천하는 방식이다. 다양한 방법의 시도를 통하여 적절한 추천시스템을 찾고, 추천시스템의 정확도를 향상시키는데 그 목적이 있다. 활용된 데이터의 분석 결과는 통합 추천시스템이 정확도가 가장 높았으며 [-]집단 추천시스템, [+]집단 추천시스템의 순인 것으로 나타났다. 이는 통합 추천시스템이 가장 효율적일 것이라는 연구자의 추측과 일치하는 결과이다. 각각의 추천시스템은 정확도의 변화를 쉽게 비교할 수 있도록 등고선지도 및 그래프를 이용하여 나타냈다. 연구의 한계점으로는 연구자가 제시한 통합 추천시스템과 [-]집단 추천시스템에 대한 정확도는 향상되었지만 이는 임의로 구분한 기준을 바탕으로 분석하였다는 점이다. 실제 추천된 영화를 바탕으로 신규고객이 영화를 선택 한 것이 아니라 기존고객의 데이터를 임의로 분류하였기 때문이다. 따라서 이는 추천 영화가 실제 고객에 미친 영향이 아니라는 한계가 존재한다. 또한 영화가 아닌 다른 상품에 대해서 이 추천시스템을 적용하였을 경우 추천 정확도에는 차이가 있을 수 있다. 따라서 추천시스템을 적용할 때에는 각 상품 및 고객집단의 특성에 적합한 적용이 필요하다.

사회연결망 분석을 활용한 연관규칙 확장기법 (Extension Method of Association Rules Using Social Network Analysis)

  • 이동원
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.111-126
    • /
    • 2017
  • 연관 상품 추천은 수많은 상품을 다루는 온라인 상거래에서 소비자의 상품 탐색 시간을 줄여주며 판매자의 매출 증대에 크게 기여한다. 이는 주문과 같은 거래의 빈도를 기반으로 생성되므로, 통계적으로 판매 확률이 높은 상품을 효과적으로 선별할 수 있다. 하지만, 판매 가능성이 높은 경우라도 신상품처럼 판매 초기에 거래 건수가 충분하지 않은 상품은 추천에서 누락될 수 있다. 연관 추천에서 누락된 상품은 이로 인해 노출 기회를 잃게 되고, 이는 거래 건수 감소로 이어져, 또 다시 추천 기회를 잃는 악순환을 겪을 수도 한다. 따라서, 충분한 거래 건수가 쌓이기 전까지 초기 매출은 일정 기간 동안 정체되는 현상을 보이는데, 의류 등과 같이 유행에 민감하거나 계절 변화에 영향을 많이 받는 상품은 이로 인해 매출에 큰 타격을 입을 수도 있다. 본 연구는 이와 같이 거래 초기의 낮은 거래 빈도로 인해 잘 드러나지 않는 상품 간의 잠재적인 연관성을 찾아 추천 기회를 확보할 수 있도록 연관 규칙을 확장하기 위한 목적으로 수행되었다. 두 상품 간에 직접적인 연관성이 나타나지 않더라도 다른 상품을 매개로 두 상품 간의 잠재적 연관성을 예측할 수 있을 것이며, 이런 연관성은 주문에서 나타나는 상품 간 상호작용으로 표현될 수 있으므로, 사회연결망 분석을 활용한 분석을 시도하였다. 사회연결망 분석기법을 통해 각 상품의 속성과 두 상품 간 경로의 특성을 추출하고 회귀분석을 실시하여, 두 상품 간 경로의 최단 거리 및 경로의 개수, 각 상품이 얼마나 많은 상품과 연관성을 갖는지, 두 상품의 분류 카테고리가 어느 정도 일치하는지가 두 상품 간의 잠재적 연관성에 미친다는 것을 확인하였다. 모형의 성능을 평가하기 위해, 일정 기간의 주문 데이터로부터 연결망을 구성하고, 이후 10일 간 생성될 상품 간 연관성을 예측하는 실험을 진행하였다. 실험 결과는 모형을 적용하지 않는 경우보다 제안 모형을 활용할 때 훨씬 많은 연관성을 찾을 수 있음을 보여준다.